Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cells Keep to One Direction by Erasing the Path

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
Findings could have implications for cancer and metastasis.

Migrating cells, it seems, cover their tracks not for fear of being followed, but to keep moving forward. Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now shown that cells in a zebrafish embryo determine which direction they move in by effectively erasing the path behind them.

The findings, published online in Nature, could have implications not just for development but also for cancer and metastasis.

As a zebrafish embryo develops, a group of cells migrate down the side of its body, leaving clumps of cells along the way. Those clumps will become ear-like organs, sensing vibrations in the water.

In the adult fish, this is called the lateral line, so the moving mass in the embryo is dubbed the lateral line primordium. To migrate, these cells follow a trail of a molecule called a chemokine - but how do they know to keep moving in the same direction?

Scientists assumed that the trail was a one-way path: a gradient where cells moved from less- to more-concentrated chemokine. But Darren Gilmour and colleagues at EMBL have now found that, rather than being produced outside them, that gradient is actually generated by the cells themselves.

“We found that the cells at the rear of the group have a ‘vacuum cleaner’,” says Erika Donà, who carried out the work. “They suck up the chemokine at the back, but at the front there’s still a lot of chemokine to follow, so the cells move forward.”

To investigate the role of the ‘vacuum cleaner’ molecule, Gilmour and Donà turned to a ‘detector’ molecule which all cells in the primordium use to sniff out the chemokine, and which the scientists labelled with a tag that goes from green to red as the detector ages.

Cells at the front of the primordium glowed green, showing they were in such frequent contact with the chemokine that their detectors were constantly being renewed, while cells at the rear encountered so little chemokine that their detectors had a chance to grow old, painting the cells red.

To show that this gradient is created by the act of sucking up the chemokine, the scientists genetically engineered fish to have the vacuum cleaner molecule in an accompanying nerve rather than at the rear of the primordium itself. When the vacuum cleaner was switched to the nerve, the nerve went from following the migrating primordium to guiding it.

“It makes a lot of sense for the cells to choose their own direction,” says Darren Gilmour, who led the work. “There’s a lot going on in the embryo, lots of cells moving in lots of directions, so it may be very difficult to sustain a gradient. What we’ve shown is that you don’t always need to.”

The study could also be relevant to another, seemingly very different type of moving cells: those in metastasizing cancers. Scientists have found that both the ‘detector’ and the ‘vacuum cleaner’ molecule play important roles in different tumours’ ability to metastasize - to spread from one place to another in the body. These findings hint at what those roles might be, and consequently at possible ways to block them.

The color-changing tag used in this study was first developed by Anton Khmelinskii in the group of EMBL Alumnus Michael Knop, now at the DKFZ-ZMBH Alliance. Joseph Barry in the Huber group helped develop and apply data analysis methods for this work.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

DNA Protection, Inch by Inch
DNA within reproductive cells is protected through a clever system of find and destroy: new lifts the veil on how this is done.
Monday, July 13, 2015
Potential New Drug Target for Cystic Fibrosis
Large-scale screen also identified genes not previously linked to the disease.
Friday, September 13, 2013
Of Flies and Men
What 10 000 fruit flies have to tell us about differences between the sexes.
Monday, July 23, 2012
Blood-clotting Protein Linked to Cancer and Septicaemia
In our not-so-distant evolutionary past, stress often meant imminent danger, and the risk of blood loss, so part of our body’s stress response is to stock-pile blood-clotting factors.
Friday, February 04, 2011
Making Enough Red Blood Cells
EMBL scientists identify molecules that ensure red blood cell production
Tuesday, June 01, 2010
Movies for the Human Genome
EMBL scientists identify the genes involved in cell division in humans
Thursday, April 01, 2010
EMBL Scientists Take New Approach to Predict Gene Expression
Thanks to scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, it is now possible to accurately predict when and where different CRMs will be active. The study, published today in Nature, is a first step towards forecasting the expression of all genes in a given organism and demonstrates that the genetic regulation that is crucial for correct embryonic development is more flexible than previously thought.
Thursday, November 05, 2009
Raising the Alarm When DNA Goes Bad
EMBL scientists identify a rapid response team that monitors and quickly responds to DNA damage.
Monday, August 17, 2009
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos