Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Study Identifies Gene for Alcohol Preference in Rats

Published: Tuesday, October 01, 2013
Last Updated: Tuesday, October 01, 2013
Bookmark and Share
Drugs and genetic changes that block Grm2 increased alcohol consumption in rats and mice.

Selectively bred strains of laboratory rats that either prefer or avoid alcohol have been a mainstay of alcohol research for decades. So-called alcohol-preferring rats voluntarily consume much greater amounts of alcohol than do non-preferring rats.

Scientists at the National Institutes of Health now report that a specific gene plays an important role in the alcohol-consuming tendencies of both types of rats.

"This study advances our understanding of the genetics and neurobiology of alcohol consumption in an important animal model of human alcoholism," says Kenneth R. Warren, Ph.D., acting director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of NIH.

As reported online in the Proceedings of the National Academy of Sciences, a diverse team of scientists, led by David Goldman, M.D., chief of NIAAA's Laboratory of Neurogenetics, used exome sequencing, an approach that comprehensively analyzes the DNA that encodes proteins.

They found a severely dysfunctional form of the gene for a brain signaling molecule called metabotropic glutamate receptor 2 (Grm2), known as a stop codon, in alcohol-preferring rats but not in non-preferring rats.

The researchers then demonstrated that drugs and genetic changes that block Grm2 increased alcohol consumption in normal rats and mice.

"We've long known that genes play an important role in alcoholism," says Dr. Goldman. "However, the genes and genetic variants that cause alcoholism have remained largely unknown. This first discovery of a gene accounting for alcohol preference in a mammalian model illustrates that genomic analysis of a model organism is a powerful approach for a complex disease such as alcoholism."

The researchers say that using genomic techniques to detect genetic variants in selected strains such as the alcohol preferring rat could be an attractive strategy for identifying candidate drug targets to treat people with alcohol problems.

Dr. Goldman and Dr. Warren noted the pioneering work of former NIAAA director Ting-Kai Li, M.D., who developed and validated the alcohol-preferring / non-preferring rat model of alcoholism with colleagues at the Alcohol Research Center at the Indiana University School of Medicine, Indianapolis, before coming to NIAAA in 2002.

Since stepping down as NIAAA director in 2008, Dr. Li has been a professor of psychiatry and behavioral sciences at Duke University School of Medicine in Durham, N.C.

"I commend Dr. Goldman and his NIAAA colleagues on this important study," said Dr. Li. "It is gratifying to see that the alcohol-preferring/non-preferring model continues to provide a foundation for advancing the search for solutions to alcohol problems."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
Scientific News
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Higher Frequency of Huntington's Disease Mutations Discovered
University of Aberdeen study shows that the gene change that causes Huntington's disease is much more common than previously thought.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!