Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Analysis of Little-Explored Regions of Genome Reveals Dozens of Cancer Triggers

Published: Friday, October 04, 2013
Last Updated: Friday, October 04, 2013
Bookmark and Share
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer.

The newly discovered mutations are in regions of DNA that do not code for proteins but instead influence activity of other genes. These areas represent an unexplored world that will allow researchers and doctors to gain new insight into the causes and treatment of cancer, said the scientists.

“This allows us to take a systematic approach to cancer genomics,” said Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics and co-senior author of the paper, which appears in the Oct. 4 issue of Science. “Now we do not need to limit ourselves to the roughly 1% of the genome that codes for proteins but can explore the rest of our DNA.”

The analysis — led by Yale researchers and including scientists from the Wellcome Trust Sanger Institute, Cornell University, and other institutions — is a statistical marriage of separate mammoth research projects, each providing groundbreaking insights in our genome, the genetic blueprint of life.

The 1000 Genomes project is compiling the personal genomes of many individuals. The data help pinpoint regions of DNA that vary little within the population and thus are of crucial importance to human health. The Encyclopedia of DNA Elements (ENCODE) project is working toward cataloguing the function of each location in the human genome.

The team took non-coding DNA elements from ENCODE project and looked for those that are highly conserved in the 1000 Genomes data. They then contrasted the data with mutations in tumor samples from about 90 patients with breast or prostate cancer. They found dozens in areas of DNA that vary little and therefore are likely to drive tumor progression. They also looked for additional features of the cancer mutations such as their proximity to regulatory-network hubs, which also indicate they may be particularly damaging.

While the research focused on variants of single base pairs, many of conclusions also apply to other, larger forms of genetic variation, the authors say.

The great diversity of variants found proves that massive data projects have direct relevance to cancer in individuals, the authors said.

“Our approach can be directly used in the context of precision medicine,” says Ekta Khurana, an associate research scientist in Gerstein’s lab and a first author of the study.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Gene that Causes Obesity-Related Metabolic Syndrome Identified
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”
Friday, May 16, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Yale’s Lifton Receives $3 Million Science Prize
Richard Lifton has received a $3 million Breakthrough Prize in Life Sciences, created by top Silicon Valley entrepreneurs.
Monday, December 16, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Yale and Harvard Researchers Rewrite an Entire Genome
Scientists recoded the entire genome of an organism and improved a bacterium’s ability to resist viruses.
Friday, October 18, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
New Study Changes View about the Genetics of Leukemia Risk
A gene that helps keep blood free of cancer is controlled by tiny pieces of RNA, a finding that may lead to better ways to diagnose blood cancers.
Tuesday, October 15, 2013
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Mystery of the Instant Noodle Chromosomes
Researchers from the Lomonosov Moscow State University evaluated the benefits of placing the DNA on the principle of spaghetti.
Oxitec ‘Self-Limiting Gene’ Offers Hope for Controlling Invasive Moth
A new pesticide-free and environmentally-friendly way to control insect pests has moved ahead with the publication of results showing that Oxitec diamondback moths (DBM) with a ‘self-limiting gene’ can dramatically reduce populations of DBM.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!