Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Overexpressed Protein A Culprit in Certain Thyroid Cancers

Published: Tuesday, October 15, 2013
Last Updated: Tuesday, October 15, 2013
Bookmark and Share
Study by UT Southwestern researchers suggests a link between nervous system and cancer.

A specific protein once thought to exist only in the brain may play a crucial role in a deadly form of thyroid cancer, as well as other cancers, and provide a fresh target for researchers seeking ways to stop its progression, UT Southwestern Medical Center researchers report today in Cancer Cell.

The scientists found that over-activation of a certain protein in hormone-secreting cells helps fuel medullary thyroid cancer cells in mice as well as in human cells, making the protein a potentially good target for therapies to inhibit the growth of these cancer cells. 

The discovery by the multidisciplinary team at UT Southwestern has implications for neuroendocrine cancers that arise in organs farther removed from the brain, including the lung and the pancreas.

Although rare, medullary thyroid cancer is often fatal.

“Once or twice a month, patients come to UT Southwestern, often complaining of soreness or a swollen throat,” says Dr. Fiemu Nwariaku, Professor of Surgery and a co-author on the paper. “When the diagnosis is a rare and incurable form of thyroid cancer called medullary thyroid carcinoma, it is always distressing for the patient – and for me – because we currently have no real therapies that truly extend life in these unfortunate cases.”

The only effective treatment is complete surgical removal of the thyroid, and frequently, tissues around the area of the tumor. Unfortunately, like cervical cancer, medullary thyroid cancer often is not diagnosed until it already has spread to other parts of the body.

More than 20 years ago, mutations in a gene were found to cause about 25 percent of these cancers. Genetic sequencing and screening has become an important diagnostic and prognostic tool for those families that share such mutations. But the causes for the remaining 75 percent of patients with this dangerous cancer have remained unknown and a source of frustration for endocrinologists and surgeons such as Dr. Nwariaku, also Associate Dean of Global Health.

While Dr. Nwariaku and his colleagues work to treat these patients, a laboratory in UT Southwestern’s Department of Psychiatry run by Dr. James Bibb, Associate Professor of Psychiatry and Neurology and Neurotherapeutics, was studying molecular mechanisms of brain disorders. In studying Alzheimer’s and other forms of dementia, Dr. Bibb and his colleagues made a transgenic mouse model of brain injury by overexpressing the Cdk5 protein that they thought was only in the brain.

As the team tracked the developing neurological problems, however, they noted that the mice became sick for reasons that were not at first apparent. The puzzle was solved when they discovered that all of the mice had developed the same thyroid cancer that Dr. Nwariaku treats.

Dr. Bibb and Dr. Nwariaku teamed up and launched a study of both human and mouse thyroid cancer cells. They discovered that Cdk5 was present in specific cells of the thyroid called C cells, and that the protein could escape normal cellular control and cause the cancer in both humans and mice.

Now, with the help of other UT Southwestern scientists, Dr. Bibb and Dr. Nwariaku, both members of the Harold C. Simmons Cancer Center, are making important progress in their efforts to develop new treatments for this and other more common forms of endocrine cancers. One promising example is the use of high-throughput screening for compounds that block the Cdk5 protein pathway, the researchers said.

“There are currently two FDA-approved drugs for treating neuroendocrine cancers, but neither of them blocks this specific pathway – one this study has shown to be a crucial vulnerability in the cancer, if appropriately targeted,” Dr. Bibb said. “We were surprised, but encouraged, by the finding because they link the human nervous system to disease processes that include the toughest of all foes, cancer.” 

Other researchers participating in the study included Dr. James Richardson, Professor of Pathology, Molecular Biology, and Plastic Surgery, who first recognized the disease in the mouse, and Dr. Xiankai Sun, Associate Professor of Radiology, who was able to track the development of the mouse tumors using advanced in vivo imaging. The work also includes an international collaboration of scientists and physicians who contributed insight and rare samples for the investigation. The research is being funded by the American Cancer Society.

"This research is ongoing, and we are now identifying precisely how Cdk5 causes the growth and spread of these forms of cancer with the goal of discovering new drugs, which we can test in our animal model,” Dr. Bibb said. “We want to work together to translate our laboratory bench-derived insight into treatments that help cancer patients. We also think we will learn more about brain injury by studying this cancer.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Saturday, October 10, 2015
UT Southwestern Biochemist Receives NIH Early Independence Award
Dr. William Israelsen studies on hibernation may aid the fight against cancer.
Wednesday, October 07, 2015
UT Southwestern Geneticist to Receive Pearl Meister Greengard Prize
Dr. Helen Hobbs will receive the prize Nov. 17 in a ceremony at The Rockefeller University.
Tuesday, October 06, 2015
Physiologists Uncover a New Code at the Heart of Biology
New “code” - the speed limit of assembly - dictate the ultimate function of a given protein.
Thursday, September 24, 2015
Cell that Replenishes Heart Muscle Found by UT Southwestern Researchers
Researchers devise a new cell-tracing technique to detect cells that do replenish themselves.
Tuesday, June 23, 2015
Researchers Find Molecular Mechanisms within Fetal Lungs that Initiate Labor
Biochemists found that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) proteins control genes.
Tuesday, June 23, 2015
Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
Mutations in Two Genes Linked to Familial Pulmonary Fibrosis and Telomere Shortening
PARN and RTEL1 genes strengthen the link between lung fibrosis and telomere dysfunction.
Tuesday, May 05, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos