Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tanning Gene Linked to Increased Risk of Testicular Cancer

Published: Friday, October 18, 2013
Last Updated: Friday, October 18, 2013
Bookmark and Share
A study from the NIH and the University of Oxford has found a gene important in skin tanning has been linked to higher risk for testicular cancer in white men.

Nearly 80 percent of white men carry a variant form of this gene, which increased risk of testicular cancer up to threefold in the study.

The research appeared online October 10, 2013 in the journal Cell, and is the result of an integrated analysis of big data supported by laboratory research. The team suspected that variations in a gene pathway controlled by the tumor suppressor gene p53 could have both positive and negative effects on human health.

 “Gene variations occur naturally, and may become common in a population if they convey a health benefit,” said Douglas Bell, Ph.D., author on the paper and researcher at the National Institute of Environmental Health Sciences (NIEHS), part of NIH. “It appears that this particular variant could help protect light-skinned individuals from UV skin damage, like burning or cancer, by promoting the tanning process, but it permits testicular stem cells to grow in the presence of DNA damage, when they are supposed to stop growing.”

Bell explained that p53 stimulates skin tanning when ultraviolet light activates it in the skin. It then must bind a specific sequence of DNA located in a gene called the KIT ligand oncogene (KITLG), which stimulates melanocyte production, causing the skin to tan.

To conduct the analysis, Xuting Wang, Ph.D., of NIEHS, co-author and lead bioinformatics scientist on the paper, led a data mining expedition to sieve through many different data sets. The team selected possible leads from the intersection of more than 20,000 p53 binding sites in the human genome, 10 million inherited genetic variations genotyped in the 1000 Genomes Project, and 62,000 genetic variations associated with human cancers identified in genome-wide association studies (GWAS). These data sets were gathered through joint efforts of thousands of researchers from around the world.

“In the end, one variant in the p53 pathway was strongly associated with testicular cancer, but also, surprisingly, displayed a positive benefit that is probably related to tanning that has occurred as humans evolved. Wang noted.

The group at the Ludwig Institute for Cancer Research at the University of Oxford, led by Gareth Bond, Ph.D., performed complex experiments to confirm the molecular mechanism that linked the variant with cancer and tanning.

“White males with a single nucleotide variation in KITLG, called the G allele, have the highest odds of having testicular cancer. In fact, the twofold to threefold increased risk is one of the highest and most significant among all cancer GWAS conducted within the past few years,” said Bond. “The high frequency of this allele in light skin individuals may explain why testicular cancer is so much more frequent in people of European descent than those of African descent.”

Bond said although the G allele increases testicular cancer risk, it may explain why testicular tumors are often easily cured with chemotherapy. “Most other tumors have a mutant p53, but in these testicular cell tumors, the p53 is functioning properly, and the drugs used for testicular cancer appear to work in concert with p53’s tumor suppression function to kill the cancer cells.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Protein-Folding Gene Helps Heal Wounds
Researchers identified a protein that dramatically accelerates wound healing in animal models.
Wednesday, November 23, 2016
NIH Researchers Unveil New Wound-Healing Role for Protein-Folding Gene in Mice
The study found that topical treatment of an Hsp60-containing gel dramatically accelerates wound closure in a diabetic mouse model.
Friday, October 28, 2016
Gene Editing Corrects Sickle Cell Mutation
Researchers demonstrate a potential pathway to developing gene-editing treatments for sickle cell disease.
Wednesday, October 26, 2016
NIH Scientists Uncover Genetic Explanation for Frustrating Syndrome
Researchers at NIH have suggested that the multiple alpha tryptase gene copies might underlie health issues that affect a substantial number of people.
Tuesday, October 18, 2016
NIH Commits $6.7 M to Advance DNA, RNA Sequencing Technology
"Can you believe they make DNA sequencers the size of staplers?" asked Meni Wanunu, Ph.D. "Ideas that were crazy twenty years ago are now happening!"
Friday, October 07, 2016
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Cracking the Code of a Deadly Virus
Researchers have exploited weaknesses in VEEV's genetic code, creating a far less deadly variant.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Repurposing Genes for Brain Development
Mammalian bone gene may be repurposed to promote cognition in humans.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!