Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cell Growth Discovery Has Implications for Targeting Cancer

Published: Monday, October 21, 2013
Last Updated: Monday, October 21, 2013
Bookmark and Share
The way cells divide to form new cells is controlled in previously unsuspected ways.

The steps leading a quiet cell to make and divvy up new parts to form daughter cells rely on some of the cell’s most complex molecular machines. Different machines play key roles at different stages of this cell cycle. Each of these cellular machines consists of many proteins assembled into a functioning whole. They carry out such tasks as repairing DNA in the newly replicated gene-bearing chromosomes, for instance, or helping pull the chromosomes apart so that they can be allocated to daughter cells.

In a study published online on Oct. 10, 2013 in the journal Molecular Cell, UCSF researchers led by molecular biologist Davide Ruggero, PhD, associate professor of urology, and computational biologist Barry Taylor, PhD, assistant professor of epidemiology and biostatistics, found that the production of entire sets of proteins that work together to perform such crucial tasks is ramped up together, all at once — not due to the transcription of genes into messenger RNA, a phenomenon scientists often study to sort out cellular controls — but at a later stage of gene expression that occurs within the cell’s protein-making factories, called ribosomes.

“We have found that these proteins are regulated specifically and exquisitely during the cell cycle,” Ruggero said. When this regulation falters, it wreaks havoc in the cell, he added. “Cell-cycle control is a process that is most often misregulated in human disease,” he said.

More specifically, the researchers found that this coordinated timing of protein production during the cell cycle is largely governed at the tail end of gene expression, within the ribosome, where cellular machinery acts on messenger RNA to churn out the chains of amino acids that eventually fold into functional form as proteins.

An Often-Neglected Process in Many Tumors

Ruggero reported key evidence in 2010 suggesting that this stage of protein production, called “translation,” might be an often-neglected process in many tumors, ranging from lymphomas, multiple myeloma and prostate cancer.

In the new study, the researchers examined translation of messenger RNA into protein at the classic phases of the cell cycle, before the cell actually divides. These are the G1 phase, when cells grow and make lots of proteins before replicating their DNA; the S phase, when cells replicate their DNA; and the G2 phase, when cells make internal components known as organelles, which they divvy up along with the chromosomes when the cell actually divides during mitosis.

The scientists used a technique known as ribosome profiling, originally developed for yeast cells in the lab of Jonathan Weismann, PhD, Howard Hughes Investigator at UCSF and professor of cellular and molecular pharmacology, to figure out which messenger RNA was being translated into protein by the ribosome during human cell division. They then used computational techniques developed by Taylor’s lab team along with the lab team of Adam Olshen, PhD, professor of epidemiology and biostatistics, to better quantify which genes had been translated into proteins.

By conducting a genome-wide investigation of translation and interrogating the data with sophisticated computer algorithms, the researchers discovered that different groups of protein were made in abundance at a particular phase, only to be quieted during another phase of the cell cycle. Previous studies of translation of messenger RNA into protein focused on only one or just a few genes at a time, according to Ruggero and Taylor.

“We hope these methods will be helpful to others who study gene regulation at the translational stage in various diseases, and those who want to identify specific targets for drug development based on discoveries of aberrant translation,” Taylor said.

Ruggero has been a pioneer in probing the ability of tumor cells to make extraordinary amounts of protein to sustain their rapid growth and immortality. He also is exploring ways to therapeutically target this excess protein production in cancer.

One striking finding from this new UCSF study is the discovery that production of a protein called RICTOR is boosted due to increased translation during the S phase of the cell cycle. RICTOR serves as a signal to help the cell cycle run like finely tuned clockwork, but several studies suggest that RICTOR often is constitutively turned on in cancer, Ruggero said.

The biochemical signaling cascade within the cell that RICTOR is a part of is under extensive investigation for experimental cancer therapies, and these new findings may point to novel strategies for drug development Ruggero said. Ruggero and Craig Stumpf, PhD, a postdoctoral fellow with his lab and the first author of the Molecular Cell paper, now are tracking down the upstream trigger that coordinates timing of many of the other suites of proteins that are produced simultaneously during the different cell-cycle phases.

UCSF technician Melissa Moreno also worked on the study. The research was funded by grants from the National Institutes of Health.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Fast-Mutating DNA Sequences Shape Early Development
What does it mean to be human? According to scientists the key lies, ultimately, in the billions of lines of genetic code that comprise the human genome.
Wednesday, November 13, 2013
Did Inefficient Cellular Machinery Evolve to Fight Viruses and Jumping Genes?
UCSF scientist poses new theory on origins of eukaryotic gene expression.
Monday, November 11, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
New Insights into How Proteins Regulate Genes
Researchers have developed a new way to parse and understand how special proteins called "master regulators" read the genome, and consequently turn genes on and off.
Monday, October 21, 2013
Scientific News
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos