Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Powerful Anti-Cancer Compound Safely Delivered

Published: Tuesday, October 22, 2013
Last Updated: Tuesday, October 22, 2013
Bookmark and Share
Researchers have discovered a way to effectively deliver staurosporine (STS).

STS is a powerful anti-cancer compound that has vexed researchers for more than 30 years due to its instability in the blood and toxic nature in both healthy and cancerous cells.

For the first time, the new method safely delivered STS to mouse tumors, suppressing them with no apparent side effects. The results were published online, Oct. 20, in the International Journal of Nanomedicine.

"By itself, staurosporine shows potent activity against a number of cancer cell lines, including chemotherapy-resistant tumors. However, it also harms normal tissue," said senior author Dr. Santosh Kesari, director of neuro-oncology at UC San Diego Moores Cancer Center. "With this study, we have been able to overcome the pharmacokinetic barriers to delivering staurosporine to tumors with the use of liposomes."

STS was originally isolated from the bacterium Streptomyces staurosporeus in 1977. The compound prompts a wide variety of cancer cell types to self-destruct, a process called apoptosis or programmed cell death. In its free form, STS is quickly metabolized and harmful to healthy cells. By trapping STS in tiny spheres called liposomes, Moores Cancer Center researchers have been able to effectively deliver the compound, past healthy tissue, to the tumor, with potent results.

Liposomes are microscopic bubbles made from the same molecules as cell membranes. Researchers use these hollow spheres to deliver therapeutic agents. Anti-cancer drugs can be loaded inside, while disguising agents coat the external membrane surface to hide the cancer-killer from the immune system.

"Staurosporine is able to drive virtually any mammal cell into apoptosis. It is able to uniquely interfere with several cell signaling pathways, even in cancer cell lines that defy frontline chemotherapy agents," said Milan Makale, a project scientist at UC San Diego Moores Cancer Center. "In the case of treatment-resistant brain, colon or pancreatic cancers, the potency of staurosporine stacks the odds in our favor of improving current treatments and outcomes. With an appropriately engineered liposomal delivery system, we can finally keep the drug in the blood longer, get it into the tumor better, and to a significant degree, spare healthy tissue."

In addition to encapsulating STS in a liposomal delivery system, the researchers developed a technique to increase the efficiency of drug-loading to more than 70 percent, the highest reported for a STS compound.

Drug-loading is the ratio of drug encapsulated by the liposome to the total amount of drug introduced into solution containing liposomes. The boosted loading was achieved by manipulating the pH environment of the cells with a proprietary method developed at Moores Cancer Center to force more STS into the liposomes. This platform technology is currently in the process of being licensed to a biotech company to develop it further for human use.

The effects of the delivery approach were validated with the use of fluorescence to track the STS penetration. The absence of weight loss in the mice confirmed the reduced toxicity.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Clearest Ever Images of Enzyme that Plays Key Roles in Aging, Cancer
UCLA-led research on telomerase could lead to new strategies for treating disease
Monday, October 19, 2015
Crop Cure
Scientists in new center to use medical research techniques to help food crops withstand drought and climate change.
Friday, October 16, 2015
Rare Childhood Leukemia Reveals Surprising Genetic Secrets
A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.
Thursday, October 15, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
New Autism Genes Are Revealed in Largest-Ever Study
Work draws more detailed picture of genetic risk, sheds light on sex differences in diagnosis.
Wednesday, September 30, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Researchers Change Cell Types by Flipping a Single Switch
New findings have identified a method for changing one cell type into another in a process called forced transdifferentiation.
Friday, December 06, 2013
Scientists Pinpoint Cell Type and Brain Region Affected by Gene Mutations in Autism
UCSF-led study zeroes in on when and where disrupted genes exert effects.
Tuesday, November 26, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos