Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

UC Develops Unique Nano Carrier to Target Drug Delivery to Cancer Cells

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Researchers have developed a unique nanostructure that can, because of its dual-surface structure, serve as an improved “all-in-one tool” against cancer.

A unique nanostructure developed by a team of international researchers, including those at the University of Cincinnati, promises improved all-in-one detection, diagnoses and drug-delivery treatment of cancer cells.

The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided (Janus) surface and within its porous interior. Because of its unique structure, the nano carrier can do all of the following:

•     Transport cancer-specific detection nanoparticles and biomarkers to a site within the body, e.g., the breast or the prostate. This promises earlier diagnosis than is possible with today’s tools.
•     Attach fluorescent marker materials to illuminate specific cancer cells, so that they are easier to locate and find for treatment, whether drug delivery or surgery.
•     Deliver anti-cancer drugs for pinpoint targeted treatment of cancer cells, which should result in few drug side effects. Currently, a cancer treatment like chemotherapy affects not only cancer cells but healthy cells as well, leading to serious and often debilitating side effects.

This research, titled “Dual Surface Functionalized Janus Nanocomposites of Polystyrene//Fe304@Si02 for Simultaneous Tumor Cell Targeting and pH-Triggered Drug Release,” will be presented as an invited talk on Oct. 30, 2013, at the annual Materials Science & Technology Conference in Montreal, Canada. Researchers are Feng Wang, a former UC doctoral student and now a postdoc at the University of Houston; Donglu Shi, professor of materials science and engineering at UC’s College of Engineering and Applied Science (CEAS); Yilong Wang of Tongji University, Shanghai, China; Giovanni Pauletti, UC associate professor of pharmacy; Juntao Wang of Tongji University, China; Jiaming Zhang of Stanford University; and Rodney Ewing of Stanford University.
This recently developed Janus nanostructure is unusual in that, normally, these super-small structures (that are much smaller than a single cell) have limited surface. This makes is difficult to carry multiple components, e.g., both cancer detection and drug-delivery materials. The Janus nanocomponent, on the other hand, has functionally and chemically distinct surfaces to allow it to carry multiple components in a single assembly and function in an intelligent manner.
“In this effort, we’re using existing basic nano systems, such as carbon nanotubes, graphene, iron oxides, silica, quantum dots and polymeric nano materials in order to create an all-in-one, multidimensional and stable nano carrier that will provide imaging, cell targeting, drug storage and intelligent, controlled drug release,” said UC’s Shi, adding that the nano carrier’s promise is currently greatest for cancers that are close to the body’s surface, such as breast and prostate cancer.
If such nano technology can someday become the norm for cancer detection, it promises earlier, faster and more accurate diagnosis at lower cost than today’s technology. (Currently, the most common methods used in cancer diagnosis are magnetic resonance imaging or MRI; Positron Emission Tomography or PET; and Computed Tomography or CT imaging, however, they are costly and time consuming to use.)
In addition, when it comes to drug delivery, nano technology like this Janus structure, would better control the drug dose, since that dose would be targeted to cancer cells. In this way, anticancer drugs could be used much more efficiently, which would, in turn, lower the total amount of drug administered.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover Gene That Causes Deafness
University of Cincinnati scientists have found a new genetic mutation responsible for deafness and hearing loss associated with Usher syndrome type 1.
Wednesday, October 03, 2012
Scientific News
Lung Repair and Regeneration Gene Discovered
New role for hedgehog gene offers better understanding of lung disease.
3 Ways Viruses Have Changed Science for the Better
Viruses are really good at what they do, and we’ve been able to harness their skills to learn about – and potentially improve – human health in several ways.
Mixed Up Cell Transportation Key Piece of ALS and Dementia Puzzle
Researchers from the University of Toronto are one step closer to solving this incredibly complex puzzle, offering hope for treatment.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Five New Genetic Variants Linked to Brain Cancer Identified
The biggest ever study of DNA from people with glioma – the most common form of brain cancer – has discovered five new genetic variants associated with the disease.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Fatty Liver Disease and Scarring Have Strong Genetic Component
Researchers say that hepatic fibrosis, which involves scarring of the liver that can result in dysfunction and, in severe cases, cirrhosis and cancer, may be as much a consequence of genetics as environmental factors.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Finding Links and Missing Genes
A catalogue of large-scale genetic changes around the world.
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos