Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Scientists Recode Organism’s Genome

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Researchers developed a method to engineer a bacterium’s genome to create new genetic codes.

The technique has the potential to turn microbes into efficient living factories that can make novel compounds.

The emerging field of synthetic biology seeks to redesign natural biological systems for new purposes. Living microbes have efficient mechanisms for quickly and reliably producing proteins, the building blocks of the cell. This ability has long been harnessed to produce large amounts of conventional proteins, such as insulin, for medical use.

When proteins are made, the genetic code contained in DNA is transcribed into a closely related molecule called RNA. The RNA then serves as a template to make a protein.

Each set of 3 DNA bases, called a codon, directs the cell’s machinery to add a specific amino acid to a growing protein chain. However, different codons can code for the same amino acid. For example, GCA, GCC, GCG, and GCT all direct different parts of the cell’s machinery to add the same amino acid, alanine. Similarly, UAG, UAA, and UGA are all RNA “stop” codons. Each recruits different machinery to stop the production of a protein once the amino acid chain is complete.

A team led by Dr. George Church of Harvard Medical School and Dr. Farren Isaacs of the Yale School of Medicine set out to recode the Escherichia coli genome to allow it to incorporate a synthetic non-standard amino acid (NSAA) into its protein structures. This approach would allow the bacteria to make new materials. The work was funded in part by NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of General Medical Sciences (NIGMS), and an NIH Director’s Early Independence Award. Results appeared in the October 18, 2013, issue of Science.

In this proof-of-concept study, the researchers repurposed the UAG stop codon. First, they switched all instances of UAG in the genome to another stop codon, UAA. This ensured that protein production would still end at the appropriate points and allow the cell to function normally. They then removed the stop machinery associated with UAG from the cell. Finally, they introduced genetically engineered components (aminoacyl–tRNA synthetase and tRNA) that reassigned UAG to direct the cell to incorporate NSAAs into amino acid chains.

To test the genomically recoded organism (GRO), the scientists included UAG codons in the sequence for a green fluorescent protein. They found that the GROs successfully incorporated NSAAs into the proteins.

Removing the stop machinery associated with UAG codons didn’t impair the GRO's ability to reproduce. The GROs also showed increased resistance to a type of virus that infects bacteria. It’s possible that new genetic codes may protect cells by causing errors when viral proteins are translated.

The creation of a GRO raises the possibility that researchers might be able to retool nature and create new forms of proteins. In an accompanying study, the Harvard group showed that the approach may be feasible for several other codons in the genome as well.

“Since the genetic code is universal, it raises the prospect of recoding genomes of other organisms,” Isaacs says. “This has tremendous implications in the biotechnology industry and could open entirely new avenues of research and applications.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientific News
Common Cell Transformed into Master Heart Cell
By genetically reprogramming the most common type of cell in mammalian connective tissue, researchers at the University of Wisconsin—Madison have generated master heart cells — primitive progenitors that form the developing heart.
Genetic Mutation that Prevents Diabetes Complications
The most significant complications of diabetes include diabetic retinal disease, or retinopathy, and diabetic kidney disease, or nephropathy. Both involve damaged capillaries.
Could the Food we Eat Affect Our Genes?
Almost all of our genes may be influenced by the food we eat, according to new research.
Neanderthal DNA Influences Human Disease Risk
Large-scale, evolutionary analysis compares genetic data alongside electronic health records.
Improving Regenerative Medicine
Lab-created stem cells may lack key characteristics, UCLA research finds.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH has announced that decipher the genome of the blacklegged tick which could lead to new tick control methods.
"Dark Side" of the Transcriptome
New approach to quantifying gene "read-outs" reveals important variations in protein synthesis and has implications for understanding neurodegenerative diseases.
Individuals' Medical Histories Predicted by their Noncoding Genomes
Researchers have found that analyzing mutations in regions of the genome that control genes can predict medical conditions such as hypertension, narcolepsy and heart problems.
New Source of Mutations in Cancer
Recently, a new mutation signature found in cancer cells was suspected to have been created by a family of enzymes found in human cells called the APOBEC3 family.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!