Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Identify Way to Increase Gene Therapy Success

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Scientists have found a way to keep the immune system from neutralizing a therapeutic virus before it can deliver its genetic payload.

In a study published recently in Molecular Therapy, researchers found that giving subjects a treatment to temporarily rid the body of antibodies provides the virus safe passage to targeted cells, allowing it to release a corrective or replacement gene to treat disease.

Gene therapy is among the most promising treatment options for such genetic disorders as muscular dystrophy, congenital blindness and hemophilia. Scientists also are investigating gene therapy as a cure for some cancers, neurodegenerative diseases, viral infections and other acquired illnesses. To get the therapeutic gene into cells, researchers have turned to viruses, which deliver their genetic material into cells as part of their normal replication process. Time and time again, these efforts have been thwarted by the body’s own immune system, which attacks the viral vector. The therapeutic genes aren’t delivered and disease rages on.

Now, a team led by Louis G. Chicoine, MD, Louise Rodino-Klapac, PhD, and Jerry R. Mendell, MD, principal investigators in the Center for Gene Therapy at Nationwide Children’s, has shown for the first time that using a process called plasmapheresis just before delivering a virus-packed gene therapy protects the virus long enough for it to enter the cell and deliver the gene.

Plasmapheresis, widely used to treat patients with autoimmune disorders, removes blood from the body, separates the plasma and cells, filters out antibodies, and returns the blood to the patient. The antibody loss is temporary; the body begins producing new antibodies within a few hours of the procedure.

In a study of a gene therapy designed to treat Duchenne muscular dystrophy (DMD), Drs. Chicoine and Rodino-Klapac used plasmapheresis in a large animal model, then injected a virus packed with a micro-dystrophin gene. When they examined the levels of micro-dystrophin gene expression in the animals, they found a 500 percent percent increase over gene expression in animals that did not receive plasmapheresis. Dr. Mendell, director of the Center for Gene Therapy, helped conceive of this treatment for DMD patients based on experience with autoimmune diseases such as myasthenia gravis and inflammatory nerve diseases.

“Right now, gene therapy seems to work best in patients who have no antibodies for the virus being used to deliver the gene,” Dr. Mendell says. “That limits the number of patients who can benefit from gene therapy.”

Using plasmapheresis would increase the potential for gene therapy, Dr. Chicoine adds, by eliminating one obstacle of immune reaction.

“As gene therapy becomes more prevalent, patients may need to receive more than one treatment,” Dr. Rodino-Klapac says. “The problem is that when they get the first treatment, their body will develop antibodies to the virus used to deliver the gene. Using plasmapheresis on someone who previously received gene therapy could allow them to be treated again.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos