Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Way to Increase Gene Therapy Success

Published: Thursday, October 31, 2013
Last Updated: Thursday, October 31, 2013
Bookmark and Share
Scientists have found a way to keep the immune system from neutralizing a therapeutic virus before it can deliver its genetic payload.

In a study published recently in Molecular Therapy, researchers found that giving subjects a treatment to temporarily rid the body of antibodies provides the virus safe passage to targeted cells, allowing it to release a corrective or replacement gene to treat disease.

Gene therapy is among the most promising treatment options for such genetic disorders as muscular dystrophy, congenital blindness and hemophilia. Scientists also are investigating gene therapy as a cure for some cancers, neurodegenerative diseases, viral infections and other acquired illnesses. To get the therapeutic gene into cells, researchers have turned to viruses, which deliver their genetic material into cells as part of their normal replication process. Time and time again, these efforts have been thwarted by the body’s own immune system, which attacks the viral vector. The therapeutic genes aren’t delivered and disease rages on.

Now, a team led by Louis G. Chicoine, MD, Louise Rodino-Klapac, PhD, and Jerry R. Mendell, MD, principal investigators in the Center for Gene Therapy at Nationwide Children’s, has shown for the first time that using a process called plasmapheresis just before delivering a virus-packed gene therapy protects the virus long enough for it to enter the cell and deliver the gene.

Plasmapheresis, widely used to treat patients with autoimmune disorders, removes blood from the body, separates the plasma and cells, filters out antibodies, and returns the blood to the patient. The antibody loss is temporary; the body begins producing new antibodies within a few hours of the procedure.

In a study of a gene therapy designed to treat Duchenne muscular dystrophy (DMD), Drs. Chicoine and Rodino-Klapac used plasmapheresis in a large animal model, then injected a virus packed with a micro-dystrophin gene. When they examined the levels of micro-dystrophin gene expression in the animals, they found a 500 percent percent increase over gene expression in animals that did not receive plasmapheresis. Dr. Mendell, director of the Center for Gene Therapy, helped conceive of this treatment for DMD patients based on experience with autoimmune diseases such as myasthenia gravis and inflammatory nerve diseases.

“Right now, gene therapy seems to work best in patients who have no antibodies for the virus being used to deliver the gene,” Dr. Mendell says. “That limits the number of patients who can benefit from gene therapy.”

Using plasmapheresis would increase the potential for gene therapy, Dr. Chicoine adds, by eliminating one obstacle of immune reaction.

“As gene therapy becomes more prevalent, patients may need to receive more than one treatment,” Dr. Rodino-Klapac says. “The problem is that when they get the first treatment, their body will develop antibodies to the virus used to deliver the gene. Using plasmapheresis on someone who previously received gene therapy could allow them to be treated again.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
The Genetic Roots of Adolescent Scoliosis
Scientists at the RIKEN Center for Integrative Medical Sciences in collaboration with Keio University in Japan have discovered a gene that is linked to susceptibility of Scoliosis.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
Understanding the Molecular Origin of Epigenetic Markers
Researchers at IRB Barcelona discover the molecular mechanism that determines how epigenetic markers influence gene expression.
New Tech Enables Epigenomic Analysis with a Mere 100 Cells
A new technology that will dramatically enhance investigations of epigenomes, the machinery that turns on and off genes and a very prominent field of study in diseases such as stem cell differentiation, inflammation and cancer has been developed by researchers at Virginia Tech.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
Toxin from Salmonid Fish has Potential to Treat Cancer
Researchers from the University of Freiburg decode molecular mechanism of fish pathogen.
Study Finds Non-Genetic Cancer Mechanism
Cancer can be caused solely by protein imbalances within cells, a study of ovarian cancer has found.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!