Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Fountain-of-Youth Gene Repairs Tissue Damage in Adults

Published: Monday, November 11, 2013
Last Updated: Monday, November 11, 2013
Bookmark and Share
Young animals recover from tissue damage better than adults, and from Charles Darwin's time until now, scientists have puzzled over why this is the case.

A study published by Cell Press November 7th in the journal Cell has revealed that an evolutionarily conserved gene called Lin28a, which is very active in embryos but not in adults, enhances tissue repair after injury when reactivated in adult mice. The findings open up new avenues for the treatment of injuries and degenerative diseases in adult humans.

"It sounds like science fiction, but Lin28a could be part of a healing cocktail that gives adults the superior tissue repair seen in juvenile animals," says senior study author George Daley of Boston Children's Hospital and Harvard Medical School.

Tissue repair is more robust in juveniles than in adults throughout the evolutionary spectrum of organisms, from insects and amphibians to fish and mammals. The molecular causes of this phenomenon have been elusive, but Daley and his collaborators speculated that the Lin28a protein could play a role because it regulates growth and development in juveniles, but its levels decline with age.

To test whether this protein might influence tissue repair in adults, Daley and his team reactivated the Lin28a gene in adult mice. Lin28a enhanced hair regrowth in these mice after they were shaved, and promoted tissue repair in their ears and digits after injury. The protein also stimulated cell proliferation and migration, which are critical for tissue repair. Lin28a achieved all of these effects by increasing the production of several metabolic enzymes and enhancing metabolic processes that are normally more active in embryos.

"We were surprised that what was previously believed to be a mundane cellular 'housekeeping' function would be so important for tissue repair," says study author Shyh-Chang Ng of Harvard Medical School. "One of our experiments showed that bypassing Lin28a and directly activating mitochondrial metabolism with a small-molecule compound also had the effect of enhancing wound healing, suggesting that it could be possible to use drugs to promote tissue repair in humans."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Genome-Forward Approach to Tackling Drug-Resistant Cancers
If you really want to understand why a particular human cancer resists treatment, you have to be able to study that tumor in a way that just isn't possible in humans.
Thursday, September 26, 2013
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!