Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

HPV Can Damage Genes and Chromosomes Directly, Sequencing Study Shows

Published: Tuesday, November 12, 2013
Last Updated: Tuesday, November 12, 2013
Bookmark and Share
This study shows that HPV can damage genes and chromosomes directly, revealing a new way by which HPV might contribute to cancer development.

The virus that causes cervical, head and neck, anal and other cancers can damage chromosomes and genes where it inserts its DNA into human DNA, according to a new study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James).

It’s long been known that cancer-causing types of human papillomavirus (HPV) produce two viral proteins, called E6 and E7, which are essential for the development of cancer. However, they are not sufficient to cause cancer. Additional alterations in host-cell genes are necessary for cancer to develop. Here, scientists identified a new mechanism by which HPV may damage host DNA directly and contribute to cancer development.

Published in the journal Genome Research, this laboratory study used whole-genome sequencing to investigate the relationship between the HPV and host genomes in human cancers.

“Our sequencing data showed in vivid detail that HPV can damage host-cell genes and chromosomes at sites of viral insertion,” says co-senior author David Symer, MD, PhD, assistant professor of molecular virology, immunology and medical genetics at the OSUCCC – James.

“HPV can act like a tornado hitting the genome, disrupting and rearranging nearby host-cell genes,” Symer explains. “This can lead to overexpression of cancer-causing genes in some cases, or it can disrupt protective tumor-suppressor genes in others. Both kinds of damage likely promote the development of cancer.”

“We observed fragments of the host-cell genome to be removed, rearranged or increased in number at sites of HPV insertion into the genome,” says co-senior author Maura Gillison, MD, PhD, professor of medicine, epidemiology and otolaryngology and the Jeg Coughlin Chair of Cancer Research at the OSUCCC – James. “These remarkable changes in host genes were accompanied by increases in the number of HPV copies in the host cell, thereby also increasing the expression of viral E6 and E7, the cancer-promoting genes.”

HPV causes about 610,000 cancers annually worldwide, including virtually all cervical cancers, and many anogenital and head and neck cancers. How it causes cancer isn’t completely understood.

The two cancer-causing proteins, E6 and E7, silence two key tumor-suppressor genes in host cells, contributing to cancer development. “E6 and E7 are critically important for the virus to cause cancer. Our findings shed light on how HPV, and perhaps other viruses, can disrupt the structure of host chromosomes and genes and thereby contribute to cancer development,” Gillison explains.

For this study, Symer, Gillison and their colleagues examined 10 cancer-cell lines and two head and neck tumor samples from patients. Along with whole-genome sequencing, the scientists used several molecular assays, including RNA sequencing, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH).

Key technical findings included:
•    The genome-wide analysis, at single nucleotide resolution, identified a striking and recurrent association between HPV integrants and adjacent genomic amplifications, deletions and translocations;
•    The HPV integrants mapped broadly across the human genome, with no evidence of recurrent integration into particular chromosomal hotspots;
•    The researchers proposed a “looping” model by which abnormal viral replication results in the extraordinary damage that occurs to host chromosomes at the sites of viral DNA insertion.

“Our study reveals new and interesting information about what happens to HPV in the ‘end game’ in cancers,” Symer says. “Overall, our results shed new light on the potentially critical, catastrophic steps in the progression from initial viral infection to development of an HPV-associated cancer.”

Funding from the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, the Ohio Supercomputer Center, an Ohio Cancer Research Associate grant, the Oral Cancer Foundation and the Intramural Research Program of the National Institutes of Health, National Cancer Institute Center for Cancer Research, supported this research.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Nano Drug Crosses Blood-Brain Tumor Barrier
This laboratory study shows that a nanotechnology drug called SapC-DOPS crosses barrier and targets brain-tumor cells and retards growth of tumor blood vessels.
Monday, July 22, 2013
Study Shows How the Nanog Protein Promotes Growth of Head and Neck Cancer
A protein called Nanog helps the renewal of healthy embryonic stem cells and promotes cancer stem cell proliferation in head and neck cancer.
Monday, June 24, 2013
Scientific News
How it Works: Advanced Data Analysis Using Visualization
Visualisation of data can be used to help molecular biologists tackle the vast datasets their experiments create.
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Molecular Origins of Dust Mite Allergy Discovered
Scientists have identified molecules of house dust mites that are targeted by the immune system of children, developing allergic rhinitis and asthma.
Gene-Editing Cures Genetic Blood Disorder in Mice
New technology may offer minimally invasive treatment for genetic disorders of the blood.
Epigenetics and Neural Cell Death
Researchers demonstrate how deregulation of an epigenetic mechanism active in early neurogenesis phases triggers neural cell death.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
New Compound Shows Promise in Treating Multiple Human Cancers
The research presents a new way to efficiently kill these cancerous cells and holds promise for the treatment of all cancers.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos