" "
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Finds Gut Microorganisms May Determine Cancer Treatment Outcome

Published: Monday, November 25, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
An intact population of microorganisms that derive food and benefit from other organisms living in the intestine is required for optimal response to cancer therapy.

NCI scientists found that tumors of germ-free mice (mice completely lacking these microorganisms), or mice treated with antibiotics to deplete the gut of bacteria, were largely impaired in their ability to respond to immunotherapy that slows cancer growth and prolongs survival. The mice were also impaired in their ability to respond to mainstay chemotherapy drugs such as oxaliplatin and cisplatin. These findings in mice may underscore the importance of microorganisms in optimal cancer treatment outcomes in humans. The study, led by Romina Goldszmid, Ph.D., staff scientist, NCI, and Giorgio Trinchieri, M.D., director of the Cancer and Inflammation Program, Center for Cancer Research, NCI, appeared Nov. 22, 2013, in Science.

Gut commensal microbiota are microorganisms that live in the gut and thrive but do not affect their host, in this case laboratory mice. Humans also harbor gut commensal microbiota that can influence local and body-wide inflammation as well as modify the tumor microenvironment, which consists of cells, signaling molecules and mechanisms that may support tumor growth and also cause drug resistance.

To study the importance of commensal bacteria, the scientists used mice raised in sterile conditions from birth so they did not harbor any bacteria, or alternatively, conventionally raised mice that received a potent antibiotic cocktail that is known to decrease bacteria by more than 10,000–fold.  The mice received these antibiotics in their drinking water, starting three weeks prior to tumor inoculation. They continued to receive doses of the antibiotic cocktail throughout the experiment.

To analyze tumors at comparable stages of progression, lymphoma, colon, and melanoma cancers that could be transplanted were selected, based on their susceptibility to therapeutic drugs. Cancer cells from these tumors were then injected under the skin of the mice, where they formed tumors that grew to reach a diameter of one-fifth of an inch or more. The tumors were then treated with an immunotherapy that included CpG-oligonucleotides, which stimulated the immune system, or with the chemotherapy drugs oxaliplatin and cisplatin, which attacked the tumors.

Germ-free mice, or mice that received the antibiotic cocktail, responded poorly to drug therapy for their tumors. This resulted in a lower production of cytokines (proteins secreted by lymph cells that affects cellular activity and controls inflammation) as well as lower tumor death therefore demonstrating that optimal responses to cancer therapy required an intact commensal microbiota.

In an independent co-submitted study that will appear in the same issue of Science, Laurence Zitvogel, M.D., Ph.D., Gustave Roussy Institute, Paris, and colleagues showed that a different type of chemotherapy drug, cyclophosphamide, altered the composition of the intestinal microbiota and damaged the intestinal wall, thereby affecting optimal anti-tumor immune response and the therapeutic effectiveness of cyclophosphamide.

“The use of antibiotics should be considered as an important element affecting microbiota composition. It has been demonstrated, and our present study has confirmed, that after antibiotic treatment the bacterial composition in the gut never returns to its initial composition,” said Trinchieri. “Thus, our findings raise the possibility that the frequent use of antibiotics during a patient’s lifetime or to treat infections related to cancer and its side-effects may affect the success of anti-cancer therapy.”

In next steps, Goldszmid and Trinchieri will work in mice to fully characterize the molecular signaling by which the bacteria in the gut can actually send messages to distant organs or tumors and change the type and level of inflammation present in those organs. They also plan to characterize, in humans, the role of gut bacteria on the bodies’ inflammatory response and tumor response to therapy. Additionally, the researchers plan to design clinical studies by giving antibiotics to healthy volunteers to study their effect on the molecular mechanisms regulating inflammation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
The Spice of Life
Scientists discover important genetic source of human diversity.
Removing Race from Human Genetic Research
A group of scientists are urging their colleagues to take a step forward and stop using racial categories when researching and studying human genetics.
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Switch Lets Salmonella Fight, Evade Immune System
Researchers at the University of Illinois at Chicago have discovered a molecular regulator that allows salmonella bacteria to switch from actively causing disease to lurking in a chronic but asymptomatic state called a biofilm.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!