Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Researchers Identify Genomic Variant Associated with Sun Sensitivity, Freckles

Published: Tuesday, November 26, 2013
Last Updated: Monday, November 25, 2013
Bookmark and Share
NIH-funded work finds genetic switch for pigmentation trait in non-coding, regulatory region of newly associated gene.

Researchers have identified a genomic variant strongly associated with sensitivity to the sun, brown hair, blue eyes - and freckles. In the study of Icelanders the researchers uncovered an intricate pathway involving the interspersed DNA sequence, or non-coding region, of a gene that is among a few dozen that are associated with human pigmentation traits.

The study by an international team including researchers from the National Institutes of Health was reported in the Nov. 21, 2013, online edition of the journal Cell.

It is more common to find people with ancestors from geographic locations farther from the equator, such as Iceland, who have less pigment in their skin, hair and eyes.

People with reduced pigment are more sensitive to the sun, but can more easily draw upon sunlight to generate vitamin D3, a nutrient essential for healthy bones.

The researchers, including scientists from the National Human Genome Research Institute (NHGRI), a part of NIH, analyzed data from a genome-wide association study (GWAS) of 2,230 Icelanders. A GWAS compares hundreds of thousands of common differences across individuals' DNA to see if any of those variants are associated with a known trait.

"Genes involved in skin pigmentation also have important roles in human health and disease," said NHGRI Scientific Director Dan Kastner, M.D., Ph.D. "This study explains a complex molecular pathway that may also contribute insights into skin diseases, such as melanoma, which is caused by the interaction of genetic susceptibility with environmental factors."

The GWAS led the researchers to focus on the interferon regulatory factor 4 (IRF4) gene, previously associated with immunity. IRF4 makes a protein that spurs production of interferons, proteins that fight off viruses or harmful bacteria.

The researchers noted from genomic databases that the IRF4 gene is expressed at high levels only in lymphocytes, a type of white blood cell important in the immune system, and in melanocytes, specialized skin cells that make the pigment melanin. The new study established an association between the IRF4 gene and the pigmentation trait.

"Genome-wide association studies are uncovering many genomic variants that are associated with human traits and most of them are found in non-protein-coding regions of the genome," said William Pavan, Ph.D., co-author and senior investigator, Genetic Disease Research Branch, NHGRI. "Exploring the biological pathways and molecular mechanisms that involve variants in these under-explored portions of the genome is a challenging part of our work. This is one of a few cases where scientists have been able to associate a variant in a non-coding genomic region with a functional mechanism."

The Icelandic GWAS yielded millions of variants among individuals in the study. The researchers narrowed their study to 16,280 variants located in the region around the IRF4 gene. Next, they used an automated fine-mapping process to explore the set of variants in IRF4 in 95,085 people from Iceland. A silicon chip used in the automated process enables a large number of variants to be included in the analysis.

The data revealed that a variant in a non-coding, enhancer region that regulates the IRF4 gene is associated with the combined trait of sunlight sensitivity, brown hair, blue eyes and freckles. The finding places IRF4 among more than 30 genes now associated with pigmentation, including a gene variant previously found in people with freckles and red hair.

Part of the research team, including the NHGRI co-authors, studied the IRF4's role in the pigment-related regulatory pathway. They demonstrated through cell - culture studies and tests in mice and zebrafish that two transcription factors - proteins that turn genes on or off-interact in the gene pathway with IRF4, ultimately activating expression of an enzyme called tyrosinase.

One of the pathway transcription factors, MITF, is known as the melanocyte master regulator. It activates expression of IRF4, but only in the presence of the TFAP2A transcription factor. A greater expression of tyrosinase yields a higher production of the pigment melanin in melanocytes.

"This non-coding sequence harboring the variant displayed many hallmarks of having a function and being involved in gene regulation within melanocyte populations," said Andy McCallion, Ph.D., a co-author at Johns Hopkins University, Baltimore, and collaborator with the NHGRI group.

The newly discovered variant acts like a dimmer switch. When the switch in the IRF4 enhancer is in the on position, ample pigment is made. Melanin pigment gets transferred from melanocytes to keratinocytes, a type of skin cell near the surface of the skin, and protects the skin from UV radiation in sunlight.

If the switch is turned down, as is the case when it contains the discovered variant, the pathway is less effective, resulting in reduced expression of tyrosinase and melanin production. The exact mechanism that generates freckling is not yet known, but Dr. Pavan suggests that epigenetic variation-a layer of instructions in addition to sequence variation-may play a role in the freckling trait.

More research is needed to determine the mechanism by which IRF4 is involved in how melanocytes respond to UV damage, which can induce freckling and is linked to melanoma, the type of skin cancer associated with the highest mortality.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Deciphering Inactive X Chromosomes
Untangling the Barr body of inactive X chromosomes valuable for understanding chromosome structure and gene expression.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!