Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two Copies of Mutant Gene May Trigger Rare Adrenal Disorder

Published: Friday, November 29, 2013
Last Updated: Friday, November 29, 2013
Bookmark and Share
Mutation found by NIH, French team may allow for early identification of patients.

Many cases of a rare disorder of the adrenal glands appear to result from two copies of a mutant gene, according to a research team made up of scientists in France and at the U.S. National Institutes of Health.

The adrenal disorder, Corticotropin-independent macronodular adrenal hyperplasia, results in the formation of numerous tumors in the adrenal glands located on top of the kidneys, and which produce hormones that help the body respond to stress. The condition is one of many causes of Cushing’s syndrome, a group of symptoms resulting from an excess of cortisol, a stress hormone. Untreated, Cushing syndrome can result in high blood pressure, heart disease, bone loss, diabetes, and other health problems.

The researchers found that about a third of a group of patients with corticotropin-independent macronodular adrenal hyperplasia had mutations in both copies of a gene, designated ARMC5. This gene is thought to play a role in preventing tumors from forming. One copy of the gene occurred in all the patients’ cells, and the second copy was found only in the cells of the patients’ adrenal tumors.

Single copies of the mutant AMRC5 gene were also found in some of the family members of patients who took part in the study. Most of the family members with only one copy of the mutant gene had not developed corticotropin-independent macronodular adrenal hyperplasia and did not have Cushing’s syndrome.

Based on these observations, the researchers believe that it’s necessary to have two copies of the mutant gene to develop corticotropin-independent macronodular adrenal hyperplasia. The first mutation likely arises before birth, and occurs in all the cells of the body. Presumably, the second mutation arises sometime later in life, in the cells of the adrenal gland. The tumors then develop in the adrenal glands after the second mutation has occurred. The researchers are unsure why the second mutation develops, and why the tumors appear in the adrenal glands and not in some other part of the body.

“Because they often don’t cause any obvious symptoms, adrenal tumors may go undiagnosed for many years,” explained study co-author Constantine A. Stratakis, M.D., of the Division of Intramural Research at the Eunice Kennedy ShriverNational Institute of Child Health and Human Development (NICHD). “If we could screen family members for the ARMC5gene, we could monitor their cortisol levels and treat them after the first sign of Cushing’s syndrome, and avoid the long-term consequences of the disorder.”

The study’s first author was Guillaume Assie, M.D., Ph.D. Along with NICHD’s Stratakis, the study also included senior author Jerome Bertherat, M.D., of the Cochin Institute, in Paris, and scientists at other French research institutions.

The study findings appear in the New England Journal of Medicine.

“Apparently, quite a few individuals with the single mutation do not go on to develop tumors,” Dr. Bertherat said. “Now that we have discovered this connection with ARMC5, we would like to investigate what happens to allow the secondary mutations in adrenal tissue that precede the development of tumors.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Souped-up Remote Control Switches Behaviors On-and-Off in Mice
BRAIN Initiative yields chemical-genetic tool with push-pull capabilities.
Thursday, May 07, 2015
NIH-funded Study Points Way Forward for Retinal Disease Gene Therapy
Benefits for Leber congenital amaurosis peak after one to three years, then diminish.
Tuesday, May 05, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos
Researchers modify the gene responsible for a potentially fatal blood disorder using CRISPR/Cas9 technology.
Saturday, May 02, 2015
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
How to Become a Follicular T Helper Cell
Uncovering the signals that govern the fate of T helper cells is a big step toward improved vaccine design.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!