Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Data Does Not Improve Anticoagulation Control with Warfarin

Published: Monday, December 09, 2013
Last Updated: Monday, December 09, 2013
Bookmark and Share
NIH-funded study shows genotyping adds no benefit when added to a clinically-guided dosing formula.

Combining genetic data with clinical information to determine the initial dosage of the blood thinner warfarin, used to prevent blood clots in the circulatory system, was no more effective in achieving stable anticoagulation than using only clinical information, according to a National Institutes of Health-funded clinical trial.

In addition, the study found that in African-Americans, anticoagulation control was lower in the genetics-based approach compared to the clinically-based method.

The results of the Clarification of Optimal Anticoagulation through Genetics (COAG) trial, supported by the NIH's National Heart, Lung, and Blood Institute, were presented at the American Heart Association (AHA) Scientific Sessions in Dallas. The study was published simultaneously in the New England Journal of Medicine.

"The use of genetic data holds great promise for predicting disease risk or determining optimal therapies, but it must be put to the test through clinical trials like this one to determine how to best use that information," said Gary H. Gibbons, M.D., director of the NHLBI. "This is especially true for complex drugs like warfarin whose action in our bodies is influenced by a variety of genetic, clinical and environmental factors."

Warfarin is the most commonly prescribed drug to prevent blood clots in conditions such as atrial fibrillation, deep vein thrombosis, or pulmonary embolism. Though warfarin is an effective therapy for many people with cardiovascular problems, the drug poses risks if improperly dosed. If dosed too high, warfarin can increase the risk of bleeding; if dosed too low, it can increase the risk of blood clots.

Proper dosing of warfarin is complicated because the drug interacts with many other common medications as well as some foods. When determining an initial dose, doctors often start with a standard dose and can take certain clinical indicators into account to alter that dose.

These clinical measures include age, body size, smoking status, and use of certain medications. During the initial weeks of therapy, the warfarin activity is monitored closely through blood tests, and adjustments are made as needed.

Recent research has suggested that variants of two genes, CYP2C9 and VKORC1, may be important in selecting the dose of warfarin needed for individual patients.

Based on these studies, dosing formulas have been developed that incorporate a person's genetic profile along with the patient's clinical characteristics to try and better predict the proper dose of warfarin - an approach known as pharmacogenetics.

However, the evidence supporting pharmacogenetics for warfarin has not been definitive; small clinical studies and some observational data have produced conflicting results. In addition, there have been differences noted in how accurate these dosing formulas are in different groups of patients. In particular, the formulas tend to be somewhat less accurate in African-Americans.

"Given the lack of definitive information on whether or not pharmacogenetics can improve the care of patients and the need to study a broad range of patients being treated with warfarin, we needed a large clinical trial like COAG to help resolve this important question," said Stephen Kimmel, M.D., of the Perelman School of Medicine at the University of Pennsylvania and principal investigator of the COAG trial.

COAG enrolled 1,015 patients beginning warfarin therapy and randomly assigned them to one of two dosing strategies. During the first five days of therapy, the participants would have their dosages determined and adjusted by a clinical formula or a pharmacogenetic formula. The participants were monitored for 23 additional days, and dosage changes were made using a standard approach. Participants and the treating physician were blinded to the strategy and the dose of warfarin.

Study investigators compared how much time the patients spent in their ideal therapeutic dosage range during the 28-day monitoring phase. Among all patients, the clinical and pharmacogenetic groups were virtually identical at 45.4 percent and 45.2 percent time in therapeutic range, respectively.

Among the 255 African-American participants, the pharmacogenetic formula provided only 35.2 percent time in therapeutic range compared to 43.5 percent for the clinical formula. African-Americans in the pharmacogenetic group generally took longer to reach an ideal dose compared to the clinical group (70 percent in the pharmacogenetic group reached their ideal range by day 14 compared to 87 percent in the clinical group). The African-Americans in the pharmacogenetic group did not experience any increased health issues like bleeding or clotting, however. There were also no differences in adverse events between the two dosing groups as a whole, and the total number of adverse events was low.

"These findings highlight the importance of developing and evaluating pharmacogenetic testing in patients from diverse racial and ethnic backgrounds," Gibbons said. "We are optimistic about the prospects of personalized, precision medicine, but we must make sure that we put these approaches through the same type of rigorous testing as any other prognostic test or clinical treatment strategy."

The COAG study was supported by NHLBI contract HHSN268200800003C and carried out at 18 hospitals and medical centers across the country. Yves Rosenberg, M.D., M.P.H., was the NHLBI project officer for COAG, and also served on the executive and steering committee.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Predicting Effective Drug Combinations For TB
Researchers analyzed gene regulatory networks to explain the effectiveness of an experimental drug combination against drug-resistant tuberculosis bacteria.
Wednesday, June 15, 2016
Genomic Data Commons Launched
Part of the National Cancer Moonshot, the GDC will centralize and standardize accessible data.
Tuesday, June 07, 2016
Drug Might Help Treat Sepsis
A DNA enzyme called Top1 plays a key role in turning on genes that cause inflammation in mouse and human cells in response to pathogens. A drug blocking this enzyme rescued mice from lethal inflammatory responses, suggesting a potential treatment for sepsis.
Wednesday, May 18, 2016
NIH Funds New Studies on Ethical, Legal and Social Impact of Genomic Information
Four new grants from the National Institutes of Health will support research on the ethical, legal and social questions raised by advances in genomics research and the increasing availability of genomic information.
Wednesday, May 18, 2016
Researchers Identify Genetic Links to Educational Attainment
Researchers at NIH have suggested that the large genetics analyses may be able to help discover biological pathways as well.
Thursday, May 12, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Scientific News
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!