Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Promotes one in a Hundred of Tumours

Published: Wednesday, December 18, 2013
Last Updated: Wednesday, December 18, 2013
Bookmark and Share
Gene discovered to play a part in one per cent of all cancers.

Researchers have identified a gene that drives the development of tumours in over one per cent of all cancer patients. This is the first time that the gene CUX1 has been broadly linked to cancer development.

The team discovered that, when CUX1 is deactivated, a biological pathway is activated that increases tumour growth. Drugs that inhibit the biological pathway are currently being used in the clinic and are in development thus highlighting a potential new targeted therapy for patients with this type of cancer-causing mutation.

Around 300,000 people in the UK each year are diagnosed with cancer, and for more than 3,000 of these patients, an inactive CUX1 gene may be an underlying factor for their disease.

"Our research is a prime example of how understanding the genetic code of cancers can drive the search for targeted cancer therapies that work more effectively and efficiently," says Dr David Adams, lead author from the Wellcome Trust Sanger Institute. "This could improve the lives of thousands of people suffering from cancer."

The team used genetic data from over 7,600 cancer patients, collected and sequenced by the International Cancer Genome Constortium (ICGC) and other groups. They found that in around one per cent of the cancer genomes studied, mutations deactivated CUX1, an event associated with tumour growth.

CUX1 is mutated at a relatively low frequency, but across many different types of cancer. Because previous studies focused on genes that are mutated at a high rate in one cancer type to find cancer drivers, CUX1 was missed as a driver of cancer.

"Our work harnesses the power of combining large-scale cancer genomics with experimental genetics," says Dr Chi Wong, first author from the Wellcome Trust Sanger Institute and practising Haematologist at Addenbrooke's Hospital. "CUX1 defects are particularly common in myeloid blood cancers, either through mutation or acquired loss of chromosome 7q. As these patients have a dismal prognosis currently, novel targeted therapies are urgently needed."

"Data collected from large consortia such the ICGC, provides us with a new and broader way to identify genes that can underlie the development of cancers," says Professor David Tuveson from Cold Spring Harbor Laboratory. "We can now look at cancers as groups of diseases according to their tissues of origin and collectively examine and compare their genomes.

The team silenced CUX1 in cultured cells to understand how inactivating it might lead to the development of tumours. They found that when CUX1 is deactivated, it had a knock-on effect on a biological inhibitor, PIK3IP1, reducing its inhibitory effects. This mobilises an enzyme responsible for cell growth, phosphoinositide 3-kinase (PI3K), increasing the rate of tumour progression.

The team has already identified several dozen other genes that when mutated at a low frequency could promote cancer development. They plan to silence these genes in mice to fully understand how their inactivation may lead to cancer development and the mechanisms by which this occurs.

"Drugs that inhibit PI3K signalling are currently undergoing clinical trial," says Professor Paul Workman, Deputy Chief Executive and Head of Cancer Therapeutics at The Institute of Cancer Research, London. "This discovery will help us to target these drugs to a new group of patients who will benefit from them and could have a dramatic effect on the lives of many cancer sufferers."

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Link for Heart Disease Risk Factors Identified
Scientists discover 17 rare human genetic variations linked to diseases such as diabetes and heart disease.
Monday, October 03, 2016
Sanger Institute, St Jude Data-Sharing Agreement
Childhood cancer targeted by Sanger Institute and St Jude Children’s Research Hospital exchanges of cancer data
Tuesday, September 20, 2016
New Rare Congenital Heart Disease Disorders Found in Children
Largest genomic study of heart disease in children reveals inherited genetic roots.
Friday, August 05, 2016
Red Hair Gene Increases Cancer Mutations
Red hair gene variant drives up skin cancer mutations equivalent to that expected from 21 years of sun exposure.
Wednesday, July 13, 2016
Drug Response Predicted by Cancer Cell Lines
Large-scale study could increase success rate of developing personalised cancer treatments.
Monday, July 11, 2016
Strongest Single Gene Conclusively Implicated in Schizophrenia
Research establishes for the first time that single-letter changes to the DNA code of one gene can have such a substantial effect on the risk of schizophrenia.
Monday, March 14, 2016
Normal Skin Accrues High Number of Mutations Associated with Cancer
Researchers used genomic sequencing to gain insights into how somatic mutations build up in normal cells before the onset of cancer, a process that is poorly understood.
Friday, May 22, 2015
Antibiotic Resistant Typhoid Detected in Countries Around the World
Unappreciated global spread of multiple antimicrobial resistant typhoid mapped by international consortium.
Wednesday, May 13, 2015
Genes that Cause Pancreatic Cancer Identified by New Tool
Screening system in mice spots cancerous changes invisible to sequencing.
Thursday, December 11, 2014
Atlas Shows How Genes Affect Our Metabolism
New atlas of molecules paves the way for improved understanding of metabolic diseases.
Tuesday, May 13, 2014
Novel Mutations Define Two Types of Bone Tumour
Two related genes underlie the development of two rare bone tumours in nearly 100 per cent of patients.
Thursday, October 31, 2013
Genetic Variants Decrease Rate of Metabolism
Defects to gene reveal potential new therapeutic targets against obesity and type 2 diabetes.
Thursday, October 31, 2013
Tracking MRSA in Real Time
Study highlights benefits of rapid whole-genome sequencing.
Friday, June 15, 2012
Punctuated Evolution in Cancer Genomes
Remarkable new research overthrows the conventional view that cancer always develops in a steady, stepwise progression. It shows that in some cancers, the genome can be shattered into hundreds of fragments in a single cellular catastrophe, wreaking mutation on a massive scale.
Tuesday, January 11, 2011
1000 Genomes Project Publishes Analysis Of Completed Pilot Phase
NIH-supported work produces tool for research into genetic contributors to human disease.
Friday, October 29, 2010
Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Nanomedicine for Breast Cancer Treatment
Using nanoparticles measuring only billionths of a meter in size, doctors are able to deliver drug molecules directly to the affected tissue.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
Wrapping up the Genome
Researchers successfully package complete yeast genome using purified components, yielding new insights into genome mechanisms.
Gene Therapy Going Global with Portable Device
Portable 'gene therapy in a box' could make future cancer and HIV cures affordable in developing countries.
Zika Virus Infection Alters Human and Viral RNA
Researchers have discovered that Zika infections results in human and viral genetic modification.
Cell Metabolism Linked to Spread of Cancer
Scientists discover macrophage metabolism can be attuned to prevent the spread of cancer.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos