Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Redirecting the Rules of Attraction in Fruit Flies

Published: Friday, December 20, 2013
Last Updated: Friday, December 20, 2013
Bookmark and Share
MRC researchers have discovered a biological switch that determines which part of the fruit fly’s brain responds to pheromones, depending on whether the fruit fly is male or female.

Many previous studies have identified differences in brain structure between the sexes. However this study, published in Cell, is the first description in any animal of a specific change in nerve cell wiring that reroutes information between male and female brains.

Sex pheromones are chemicals that allow male and female animals to communicate by smell, typically provoking different responses in the two sexes. For example in fruit flies, a male sex pheromone called cVA can stimulate females to mate with a male, while repelling other males at the same time. What changes in the brain result in male and female flies interpreting the same pheromone signal in very different ways?

The team first identified and labelled two groups of nerve cells inside the fly brain that respond to pheromones using a green fluorescent protein. One group of nerve cells responded to pheromone only in male brains, while the second group responded only in females. This difference in response depended on a changeover switch that rerouted incoming pheromone information to different target cells.

In further experiments the team were able to make a small number of nerve cells male in an otherwise female brain. Manipulating the sex of the nerve cells, helped to pin point the location and the gene responsible for the ‘switch’, reversing the fly’s response to pheromones. The so-called ‘fruitless’ gene controlling this switch had previously been shown to control fruit flies’ sexual behaviour but exactly how it could achieve this through changes in brain wiring was unknown.

Dr Greg Jefferis who led the study at the MRC Laboratory of Molecular Biology said: “Arguably the biggest challenge in biology today is to understand how the pattern of connections between individual nerve cells allows the brain to process and store information and respond to the outside world. Given the huge complexity of human or even mouse brains, there is great interest in trying to understand basic principles in simpler model systems such as the fruit fly. 

Looking at the differences between the male and female brains of a species allows us to focus our efforts on wiring differences that can change behaviour. Until now it has proven very difficult to identify specific and reproducible differences in brain wiring and understand how they could alter the flow of information between male and female brains. This is what we have now shown in flies. We suspect that the same principle will apply across many species, including mammals.”

Dr Hugh Pelham, director of the MRC Laboratory of Molecular Biology. “The MRC Laboratory of Molecular Biology has a well-founded reputation for contributing to some of the world’s most important biological questions by detailed investigation starting at the molecular level. Investing in science that opens up research avenues from simple brains to more complex ones is paving the way for a far greater understanding of our own brains in health and disease.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A Fundamental Protection Mechanism Against Formalin In Mammals is Revealed
Formaldehyde, or formalin, is well known to all of us as a common chemical used in many industrial processes and also as a preservative, remarkably we also produce formaldehyde in our bodies.
Wednesday, September 30, 2015
A Gene Mutation for Excessive Alcohol Drinking Found
UK researchers have discovered a gene that regulates alcohol consumption and when faulty can cause excessive drinking.
Wednesday, November 27, 2013
£93 Million Package of Support Announced for UK’s Health Industries
Innovative business and academic projects will benefit from a new £93.2 million package of support.
Wednesday, July 31, 2013
New £23m Research Unit will use Advances in Genetics to Help Reduce Risk of Disease
Unit will exploit the latest advances in genetics to improve understanding of how changes to lifestyle or environment can reduce the risk of disease.
Monday, May 20, 2013
Gene Responsible for Increased Severity of Influenza in Chinese Populations
Researchers have found a genetic variant which explains why Chinese populations may be more vulnerable to the H1N1 form of flu, commonly known as swine flu.
Wednesday, January 30, 2013
World’s Largest Respiratory Genetics Study Launches on World COPD Day
Researchers funded by the Medical Research Council (MRC) are to conduct the largest ever study of the genetics relating to lung disease.
Thursday, November 15, 2012
A Phenomenal Legacy for London 2012
The Phenome Centre will use the cutting edge facilities developed for London 2012 to help develop better and more targeted treatment for patients.
Wednesday, August 01, 2012
MRC Cash Boost to Maximize Discovery of Mouse Models of Human Diseases
Medical Research Council to invest £61m over the next five years into mouse genetics research at MRC Harwell, Oxfordshire.
Monday, March 21, 2011
Polio Research Gives new Insight into Tackling Vaccine-Derived Poliovirus
Newly published research findings highlight the importance of completing polio eradication.
Friday, June 25, 2010
Scientists uncover new hereditary links to Alzheimer’s disease
Two genes which increase a person’s likelihood of developing the most common form of Alzheimer’s disease have been discovered in the largest-ever study of its kind into the illness.
Monday, October 05, 2009
Location of genetic varation is key to potential role in disease
Genetic variation is widely recognised as the key to survival and continued evolution of a species.
Friday, August 22, 2008
Scientific News
Gene Therapy for Metabolic Liver Diseases
Researchers have tested gene therapy in pigs from hereditary tyrosinemia type 1, with corrected liver cells being transplanted into the diseased liver.
Gene Terapy for Muscle Wasting Developed
New gene therapy could save millions of people suffering from muscle wasting disease.
Gene-Editing 'Toolbox' Targets Multiple Genes Simultaneously
Researchers have designed a system that modifies, or edits, multiple genes in a genome at once while minimising unintentional effects.
Discovering the First Farmers
Genetic analyses reveal a collection of highly distinct groups in the Near East and Europe at the dawn of agriculture.
Fighting Cancer Through Protein Pathways
Researchers have found a new drug target within a protein production pathway critical to regulating growth and proliferation of cells.
Mutations in DNA-Repair Genes Found in Advanced Prostate Cancers
New findings indicate that nearly 12% of male advanced prostate cancer sufferers have inherited mutation in DNA-repair genes.
Ice Bucket Challenge Instrumental in Gene Discovery
Donations from the ALS Ice Bucket Chellenge allowed for the largest-ever study of inherited ALS, which identified a new ALS gene.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!