Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Scientists Discover Genetic Basis for Memory Formation with Implications for Neurological Diseases

Published: Monday, December 23, 2013
Last Updated: Sunday, December 22, 2013
Bookmark and Share
Two genes linked to simple memory formation also regulate appropriate nerve responses that are lacking in related disease sufferers.

Scientists from Trinity College Dublin have shown for the first time that two genes involved in many neurological diseases act together to regulate specific aspects of protein production in nerve cells and allow the development of a simple form of memory called habituation.

These findings have implications for our understanding of memory formation in general, and will also aid ongoing research in related diseases.

Habituation occurs when we are repeatedly exposed to a stimulus and our response is lessened over time as a result. Two everyday examples include our ability to stop hearing ambient noise when concentrating on a particular task, and the fact that we stop feeling the clothes we are wearing once we are dressed.

The scientists behind the discovery worked with fruit flies to explore the fundamentals of memory and learning and to investigate the molecular function of the two genes, called ‘Atx2’ and ‘FMRP’.

Atx2 is associated with Motor Neurone Disease and Spinocerebellar Ataxia type 2, while FMRP is known to impact mental retardation and Autism Spectrum Disorder.

Fruit flies of the species Drosophila melanogaster have been used by many geneticists over the last century as ‘model organisms’ that allow them to explore the way genes work. Genetic mutations that prevent appropriate protein production and suppression in specific nerve cells are often linked with neurological diseases, with a common element among these diseases being the inability of an affected individual to adapt to a new or changing environment.

The scientists, led by Professor of Neurogenetics at Trinity, Mani Ramaswami, recently published their results in the prominent international journal PNAS. They showed that flies that normally learned to ignore a familiar, unpleasant smell, failed to do so if they had defects in either gene. They proposed two potential explanations for defective protein regulation based on their results.

Mutations that cause a loss of function in both genes lead to a failure to reduce protein production when associated proteins are not required, while an increased or altered function of the genes leads to a ‘hyper-repressed’ state in which the stimulation of specific protein production is prevented when these proteins are required.

Professor Ramaswami said: “This work may provide a partial explanation not only for defects in memory consolidation that is associated with early-stage neurodegenerative disease, but also for defects in adaptive ability seen in autism spectrum disorders.”

Dr Jens Hillebrand, Research Fellow in Genetics at Trinity and co-lead author on the paper, added: "It is nice to be able to potentially explain why FMRP and Atx2 diseases in humans are symptomatically different, even though the two proteins have rather similar normal functions."

The work is based on a successful, close collaboration with Dr K Vijay Raghavan's group in the National Center of Biological Sciences (NCBS) in Bangalore, India, and Dr Roy Parker’s group in the Howard Hughes Medical Institute in Boulder Colorado, USA.

In addition, the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, provided essential newly developed genomic tools being developed as part of a large collaboration including Trinity and NCBS.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Mutation Could Increase Understanding of ADHD
Absence of normal gene that expresses a protein involved in nerve cell communication results in seizures and hyperactivity.
Wednesday, November 27, 2013
International Research Project Identifies a New Genetic Mutation that Helps Explain the Development of Eczema
Scientists have identified a new genetic mutation linked to the development of a type of eczema known as atopic dermatitis (AD).
Monday, November 04, 2013
New Genetic Mutation Helps Explain Development of Eczema
Researchers found that a mutation in the gene Matt/Tmem79 led to the development of spontaneous dermatitis in mice.
Monday, November 04, 2013
Scientists Propose a Molecular Explanation for Degenerative Disease
An international collaboration has shed new light on the origins and molecular causes of age related degenerative conditions including Motor Neurone Disease (MND).
Monday, August 19, 2013
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Our Epigenome is Influenced by our Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos