Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Novel Cancer Cell DNA Damage Repair Mechanism

Published: Monday, December 23, 2013
Last Updated: Monday, December 23, 2013
Bookmark and Share
Findings result from application of the cell microarray screening method developed at VTT.

Cancer cells have an exceptional ability to repair damage to their DNA caused during uncontrolled cell division. Scientists have now unveiled a novel piece of the puzzle of cancer cell DNA repair mechanisms that explain the mechanistic changes in the genetic code of cancer cells.

Research with a material impact on cancer drug development was published in Science magazine on 5 December 2013.

The new findings explain partially why cancer cells, unlike normal cells, fail to die as a result of DNA damaging insults, and how this mechanism causes new genetic mutations in cancer cells. This new information directly benefits cancer research.

Now that scientists understand the repair mechanism, they are better equipped to develop drug therapies that specifically target cancerous cells.

The discovered DNA repair mechanism has previously not been described in human or mammalian cells. Cancer cells use the mechanism to repair DNA damage resulting from uncontrolled DNA replication forced by activated oncogenes.

The genes that participate in the DNA repair mechanism were discovered by Juha Rantala, Senior Scientist at VTT, and Thanos Halazonetis, Coordinator of the EU-funded GENICA (Genomic instability in cancer and pre-cancer) project, with the cell microchip screening method developed by Rantala in 2010. Based on gene silencing, the method allows a single microchip to screen the functions of tens of thousands of genes simultaneously.

This finding was preceded by years of research cooperation begun by Juha Rantala, Senior Scientist, and Professor Olli Kallioniemi (currently Director of the Finnish Institute of Molecular Medicine) from VTT and Professor Thanos Halazonetis (the University of Geneva). Thomas Helleday's research team at the Karolinska Institutet also participated in the research published in Science magazine.

The research was part of the EU's GENICA project aimed at discovering why the DNA damage sustained by cancer cells in the early stages of the disease fails to result in the programmed cell death associated with normal cells.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Heparin-like Compounds Inhibit Breast Cancer Metastasis to Bone
Heparin-like compounds decreased bone destruction and tumor growth in bone.
Friday, June 15, 2012
VTT Develops Software Tool to Integrate and Analyze Complex Medical Data
The megNet® software can be applied in understanding complex relations in living organisms, and characterizing various diseases, such as cardiac diseases and diabetes.
Friday, April 27, 2007
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!