Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Extracellular Vesicles Produced by Ocean Microbes

Published: Monday, January 13, 2014
Last Updated: Sunday, January 12, 2014
Bookmark and Share
Cyanobacteria produce and release vesicles that can serve as food parcels for marine organisms.

Marine cyanobacteria - tiny ocean plants that produce oxygen and make organic carbon using sunlight and CO2 - are primary engines of Earth’s biogeochemical and nutrient cycles. They nourish other organisms through the provision of oxygen and with their own body mass, which forms the base of the ocean food chain.

Now scientists at MIT have discovered another dimension of the outsized role played by these tiny cells: The cyanobacteria continually produce and release vesicles, spherical packages containing carbon and other nutrients that can serve as food parcels for marine organisms.

The vesicles also contain DNA, likely providing a means of gene transfer within and among communities of similar bacteria, and they may even act as decoys for deflecting viruses.

In a paper published this week in Science, postdoc Steven Biller, Professor Sallie (Penny) Chisholm, and co-authors report the discovery of large numbers of extracellular vesicles associated with the two most abundant types of cyanobacteria, Prochlorococcus and Synechoccocus. The scientists found the vesicles (each about 100 nanometers in diameter) suspended in cultures of the cyanobacteria as well as in seawater samples taken from both the nutrient-rich coastal waters of New England and the nutrient-sparse waters of the Sargasso Sea.

Although extracellular vesicles were discovered in 1967 and have been studied in human-related bacteria, this is the first evidence of their existence in the ocean.

“The finding that vesicles are so abundant in the oceans really expands the context in which we need to understand these structures,” says Biller, first author on the Science paper. “Vesicles are a previously unrecognized and unexplored component of the dissolved organic carbon in marine ecosystems, and they could prove to be an important vehicle for genetic and biogeochemical exchange in the oceans.”

Billions and billions of vesicles
Biller’s metagenomic analysis of the vesicles taken from the seawater revealed DNA from a diverse array of bacteria, suggesting that vesicle production is common to many marine microbes. The researchers estimate the global production of vesicles by Prochlorococcus alone at a billion billion billion per day - representing a notable addition of carbon to the scarce nutrient pool of the open seas.

Lab experiments showed that the vesicles are stable, lasting two weeks or more, and that the organic carbon they contain provides enough nutrients to support the growth of nonphotosynthetic bacteria.

Given the dearth of nutrients in the open ocean, the daily release by an organism of a packet one-sixth the size of its own body is puzzling, Chisholm says. Prochlorococcus has lost the ability to neutralize certain chemicals and depends on nonphotosynthetic bacteria to break down chemicals that would otherwise act as toxins. It’s possible the vesicle “snack packets” help make this relationship mutually beneficial.

“Prochlorococcus is the smallest genome that can make organic carbon from sunlight and carbon dioxide and it’s packaging this carbon and releasing it into the seawater around it,” says Chisholm, the Lee and Geraldine Martin Professor of Environmental Studies in MIT’s Department of Civil and Environmental Engineering and Department of Biology, who is lead investigator of the study. “There must be an evolutionary advantage to doing this. Our challenge is to figure out what it is.”

Because the vesicles also contain DNA and RNA, the researchers surmise they could play a role in horizontal gene transfer, a means for developing genetic diversity and sharing ecologically useful genes among the Prochlorococcus metapopulation.

Marine decoy
But perhaps the most unusual potential role of the vesicles is as a decoy for predators: Electron microscopy shows phages (viruses that attack bacteria) attached to vesicles. When a phage injects its DNA into the vesicle (making it impossible for the phage to reproduce in a living cell), it renders the phage inactive, according to Biller, who says the vesicles could be acting like chaff released by a fighter jet to divert missile attacks. A phage attached to a vesicle is effectively taken out of the battle, providing a creative means of deterrence.

“Marine cyanobacteria of the genera Prochlorococcus and Synechoccocus are the two most abundant phototrophs,” says biologist David Scanlan, a professor at the University of Warwick who was not involved in this research. “By releasing extracellular vesicles these organisms shed new light on the importance of such particles in the largest ecosystem on Earth - the open ocean - with implications for marine carbon cycling, mechanisms of horizontal gene transfer, and as a defense against phage attack.”

The vesicles first came to Chisholm’s attention in 2008 when Anne Thompson, then a graduate student, noticed little “blebs” on the surface of Prochlorococcus cells while using electron microscopy. Neither she nor Chisholm nor other ocean biologists who saw the photo were able to identify the spheres. But Biller, who joined Chisholm’s lab in 2010 after completing his graduate studies on soil bacteria, recognized them as vesicles, and began the study resulting in the Science paper.

In addition to Biller, Chisholm, and Thompson, other co-authors on the paper are Florence Schubotz and Roger Summons, of MIT’s Department of Earth, Atmospheric and Planetary Sciences, and Sara Roggensack, a former MIT lab technician who is now a graduate student at Tufts University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
How Cancer Cells Spread
Study offers new targets for drugs that may prevent cancer from spreading.
Thursday, December 17, 2015
Scaling Up Synthetic-Biology Innovation
MIT professor’s startup makes synthesizing genes many times more cost effective.
Monday, December 14, 2015
Delivering microRNAs for Cancer Treatment
Scientists exploit gene therapy to shrink tumors in mice with an aggressive form of breast cancer.
Wednesday, December 09, 2015
CRISPR-Cas9 Genome Editing Hurdle Overcome
Team re-engineers system to dramatically cut down on editing errors; improvements advance future human applications.
Thursday, December 03, 2015
Drug-Resistance Mechanism in Tumor Cells Unravelled
Targeting the RNA-binding protein that promotes resistance could lead to better cancer therapies.
Friday, October 23, 2015
Quantum Physics Meets Genetic Engineering
Researchers use engineered viruses to provide quantum-based enhancement of energy transport.
Friday, October 16, 2015
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Friday, September 25, 2015
Scientific News
Supplement May Switch off Cravings for High-Calorie Foods
Propionate is made by bacteria in the gut after they digest fiber, with researchers finding higher levels of the substance can curb cravings for junk food.
New CAR T Cell Therapy Using Double Target Aimed at Solid Tumors
Researchers at Penn University have described how antibody, carbohydrate combination could apply to range of cancer types.
Erasing Unpleasant Memories with a Genetic Switch
Researchers from KU Leuven and the Leibniz Institute for Neurobiology have managed to erase unpleasant memories in mice using a 'genetic switch'.
New Method Detects Telomere Length for Research into Cancer, Aging
UT Southwestern Medical Center cell biologists have identified a new method for determining the length of telomeres, the endcaps of chromosomes, which can influence cancer progression and aging.
Assessing the Effectiveness of Genome-Editing Technologies
Researchers have developed a cost-effective and rapid method for assessing edits generated by CRISPR-Cas9 and other genome-editing technologies.
New Cancer Drug Target Found in Dual-Function Protein
Findings from a study from TSRI have shown that targeting a protein called GlyRS might help to halt cancer growth.
Alzheimer's Genetics Point To New Research Direction
A University of Adelaide analysis of genetic mutations which cause early-onset Alzheimer’s disease suggests a new focus for research into the causes of the disease.
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!