Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH Scientists Map Genetic Changes that Drive Tumors in Rhabdomyosarcoma

Published: Monday, January 27, 2014
Last Updated: Sunday, January 26, 2014
Bookmark and Share
The genetic alterations identified could be useful in developing targeted diagnostic tools and treatments for children with the disease.

Scientists have mapped the genetic changes that drive tumors in rhabdomyosarcoma, a pediatric soft-tissue cancer, and found that the disease is characterized by two distinct genotypes.

The study, by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and their colleagues, appeared in the Jan. 23, 2014, issue of the journal Cancer Discovery.

Rhabdomyosarcoma is the most common soft-tissue sarcoma in children and affects muscles in any part of the body.

Among patients diagnosed with non-metastasized disease, about 80 percent survive at least five years, although they may experience substantial treatment-related toxic effects. However, for those with metastatic disease, the five-year survival rate is about 30 percent even with aggressive treatment.

NCI’s effort to characterize the genetic events that contribute to rhabdomyosarcoma was led by Javed Khan, M.D., head of the Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, and Jack Shern, M.D., a clinical fellow.

“These studies are very difficult to do because tissue acquisition and validation is so complex,” said Khan. “It must be noted therefore that this work would not have been possible without our brave pediatric patients and their families. In the face of their life-threatening disease, they offered their tumors for study knowing that they would not personally benefit from this work but in the hope that investigators might learn lessons that would help children diagnosed with rhabdomyosarcoma in the future.”

Khan’s team used a number of advanced sequencing techniques to investigate the genetic changes in a total of 147 rhabdomyosarcoma tumors which were paired with normal tissue samples.

These sequencing tools allowed them to unravel the complex molecular events that occur in tumor cells, compare normal DNA with tumor DNA, identify mutations in genes, and determine exactly which genes are turned on (activated) or turned off (deactivated), leading to progression of this cancer.

Through their studies, they identified two distinct genotypes of rhabdomyosarcoma tumors. The first genotype is characterized by either a PAX3 or PAX7 fusion gene; a fusion gene is a gene made by joining parts of two different genes.

The second genotype lacks a PAX fusion gene but harbors mutations in key signaling pathways; a signaling pathway is a group of proteins that work together to regulate one or more cell functions, such as cell division or cell death.

The researchers also found that, as in other types of pediatric cancers, the overall number of alterations in tumor DNA that develop over the children’s lifespan (known as somatic mutations) were relatively low compared to DNA alterations that children were born with. The somatic mutation rate was especially low in tumors with a PAX fusion gene.

Nevertheless, they did find relatively frequent somatic mutations in several genes, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB, all of which had previously been found to be mutated in rhabdomyosarcoma, as well as the genes FBXW7 and BCOR, which had not been previously associated with this disease.

Moreover, they identified mutations in additional genes in the RAS/PIK3CAsignaling pathway. Overall, alterations in this pathway were found in 93 percent of rhabdomyosarcoma tumors.

Intriguingly, many of the genes mutated in the tumors that did not have a PAX fusion gene were found to be turned on or off by proteins produced by PAX fusion genes.

“Although more work is needed, our study may provide researchers with the rationale to develop genomics-guided therapeutic interventions with greater efficacy and fewer side effects than the treatments options currently available for pediatric patients with rhabdomyosarcoma,” Shern said.

Building on this research, Khan and his team will design and test interventions that target the genetic drivers identified in this genomic analysis of rhabdomyosarcoma.

This research was a collaboration that included the Children’s Oncology Group (which collected and banked the majority of the patient tumor samples used in the study) and the Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Mass. (which provided additional patient tumor samples and bioinformatics support).

NCI has a diverse genomic portfolio, including The Cancer Genome Atlas (TCGA) program which is supported by both NCI and another institute at NIH, the National Human Genome Research Institute.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Grants to Help Identify Variants in the Genome’s Regulatory Regions
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Thursday, September 24, 2015
Grants Awarded to Explore the Genome’s Regulatory Regions that Affect Disease Risk
New computational approaches needed to wade through millions of inherited DNA differences to find which ones matter.
Tuesday, September 22, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Diet, Exercise, Smoking Habits and Genes Interact To Affect and Risk
NIH-funded study points to converging factors that drive disease-related inflammation.
Thursday, September 17, 2015
NIH Grants Seek Best Ways To Combine Genomic Information and EHRs
Researchers seek to better understand genomic basis of disease, provide tailored care to patients.
Friday, September 04, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
UC San Diego Team Up with Illumina to Speed-Read Your Microbiome
Data analysis app accelerates studies aimed at using microbes to predict, diagnose and treat human diseases.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Chromosomal Chaos
Penn study forms basis for future precision medicine approaches for Sezary syndrome
Shaking Up the Foundations of Epigenetics
Researchers at the Centre for Genomic Regulation (CRG) and the University of Barcelona (UB) published a study that challenges some of the current beliefs about epigenetics.
Genetic Defences of Bacteria Don’t Aid Antibiotic Resistance
Genetic responses to the stresses caused by antibiotics don’t help bacteria to evolve a resistance to the medications, according to a new study by Oxford University researchers.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos