Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Helping Genes Get Out of the Starting Blocks Faster

Published: Friday, February 21, 2014
Last Updated: Friday, February 21, 2014
Bookmark and Share
Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue study shows.

Elizabeth Tran, assistant professor of biochemistry, and her fellow researchers found that long non-coding RNAs prepare metabolic genes to be activated swiftly when baker's yeast needs to switch its source of energy from glucose - its main sugar source - to an alternative sugar, galactose.

The study is the first to link long non-coding RNAs with the timing of gene expression.

"The fact that long non-coding RNAs are involved in the timing of gene expression was totally unexpected," Tran said. "This opens up new and exciting challenges for the future of genomic research."

Long non-coding RNAs - ribonucleic acids that are longer than 200 nucleotides - are molecules that influence the expression of protein-coding genes in yeast, plants and mammals. They were first described in 2007, and the functions of the vast majority of these molecules remain unknown.

One suggested role of long non-coding RNAs in yeast was gene repression, but Tran's study showed the opposite is true: Long non-coding RNAs accelerate the activation of genes involved in galactose digestion when glucose is lacking in the environment.

Yeast with long non-coding RNA begin metabolizing galactose about 30 minutes quicker than yeast without - a significant time difference in an organism that replicates every 90 minutes.

"That quick shift could make the difference in survival," Tran said.

Over time, the level of galactose enzyme gene expression in yeast with and without long non-coding RNAs becomes the same, but "it's that initial burst of gene expression in response to the environment that may provide a significant evolutionary advantage," said Tran. She likened it to the edge a sprinter would gain over his opponents by propelling himself out of the starting block ahead of them.

"One reason the runner Usain Bolt is so fast is that he developed a technique of getting out of the block really quickly," she said. "Being able to do that means you can spread out your energy during the race - all because you started faster at the beginning."

Tran said that similar long non-coding RNAs might play a role in the timing of gene expression in humans as well. In mammals, they are often associated with genes that control growth and organ development, which require tight control of initiation timing.

"When a growing embryo has to make an arm, for example, that timing has to be incredibly precise," she said.

Humans contain upwards of 8,000 long non-coding RNAs, some of which have been linked to cancer, developmental diseases and cardiomyopathy and other non-DNA mutations in the genome. Tran said the chances are high that long non-coding RNAs play a role in human diseases, developmental defects and delays.

"Now the question becomes why long non-coding RNAs are so closely associated with development," Tran said. "Having opened up the possibility that they're linked to timing and not end level of gene expression is really key."

The paper was published online in PLOS Biology and is available online.  

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Purdue Innovation could Improve Personalized Cancer-Care Outcomes
An innovation could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.
Friday, August 16, 2013
Nanoparticles, 'pH Phoresis' Could Improve Cancer Drug Delivery
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles.
Wednesday, July 10, 2013
New Imaging Technology Could Reveal Cellular Secrets
Researchers have married two biological imaging technologies, creating a new way to learn how good cells go bad.
Friday, April 26, 2013
Yeast Study Yields Potential for New Cholesterol, Anti-Fungal Drugs
While studying a mutant strain of yeast, Purdue University researchers may have found a new target for drugs to combat cholesterol and fungal diseases.
Thursday, February 28, 2013
Gene's function May Give New Target for Cancer Drugs
Scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, and could one day lead to new therapies and drug targets.
Thursday, September 13, 2012
Imaging Tool Tracks Carbon Nanotubes in Living Cells
Researchers have demonstrated a new imaging tool for tracking structures called carbon nanotubes in living cells and the bloodstream, which could aid efforts to perfect their use in biomedical research and clinical medicine.
Thursday, December 08, 2011
Genome Sequencing Speeds Ability to Improve Soybeans
Purdue researchers are sequencing the soybean genome to better understand its genes and to improve its characteristics.
Friday, January 15, 2010
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
New Gene Map Reveals Cancer’s Achilles’ Heel
Team of researchers switches off almost 18,000 genes
New Discovery Sheds Light on Disease Risk
Gaps between genes interact to influence the risk of acquiring disease.
Mathematical Model Helps Show How Zebrafish Get Their Stripes
The iconic yellow and blue stripes of zebrafish form dynamically as young fish develop and grow. A mathematical model developed by Brown University researchers helps to show how pigment cells interact to form the pattern.
Epigenome Influenced by Habitat and Lifestyle
Study on Pygmy hunter-gatherer populations and Bantu farmers in Central Africa shows that habitat and lifestyle can impact the epigenome.
Shining Light on Microbial Growth and Death Inside our Guts
Precise measurement of microbial populations in gastrointestinal tracts could be key to identifying novel therapies.
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos