Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NexImmune’s AIM™ Technology Enables Novel Adoptive Immunotherapy Approach for Cancer Treatment

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
New scientific publication by NexImmune co-founder Dr. Jonathan Schneck.

NexImmune has announced a new scientific publication by NexImmune co-founder Dr. Jonathan Schneck and colleagues that provides an important advance in the use of its proprietary Artificial Immune (AIM™) Technology for cellular therapy of cancer.

The study, published this week in ACS Nano, demonstrated the use of nanoparticle artificial Antigen Presenting Cells (aAPC), a key component of the AIM technology, with applied magnetic fields to activate and expand naive, normally poorly responsive T cell populations. Significantly, activated cells were highly effective for treating cancer in a mouse model system.

Activating naive T cells has been a key, but elusive goal of immunotherapy as these cells are more effective than differentiated T cell subtypes for treating cancer. Once activated, naive T cells have a higher proliferative capacity and a greater ability to generate strong, long-term T cell responses important for immunotherapy.

Thus, this study describes a novel approach whereby AIM aAPC can potentially be coupled to magnetic-field-enhanced activation of T cells to increase the yield and activity of antigen-specific T cells expanded from naive precursors, thereby improving cellular therapy for cancer.

CEO Kenneth Carter commented: “The publication in ACS Nano represents an important advance in the therapeutic potential of the AIM aAPC technology in adoptive cellular therapy involving direct ex-vivo stimulation of patient immune cells. T cells activated by aAPC in a magnetic field inhibited growth of B16 melanoma in mice with significantly improved host survival, thereby demonstrating the clinical relevance of the AIM technology for adoptive immunotherapy.”

The AIM aAPC platform is the foundation for an innovative approach to immunotherapy in which the body’s own immune system is guided by a synthetic particle engineered to activate and orchestrate a targeted immune response.

Central to the AIM technology are aAPC that bypass many of the bottlenecks related to both established and emerging immunotherapies.

AIM aAPC have potential uses as both ex vivo adoptive immunotherapies and as injectable off-the-shelf medicines. NexImmune, Inc. holds an exclusive worldwide license to the AIM aAPC technology from Johns Hopkins University.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Tech Vastly Improves CRISPR/Cas9 Accuracy
A new CRISPR/Cas9 technology developed by scientists at UMass Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target changes typically seen in standard CRISPR gene editing techniques.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Biologists Induce Flatworms to Grow Heads and Brains of Other Species
Findings shed light on role of a new kind of epigenetic signaling in evolution, could yield clues for understanding birth defects and regeneration.
Turning up the Tap on Microbes Leads to Better Protein Patenting
Mining millions of proteins could become faster and easier with a new technique that may also transform the enzyme-catalyst industry, according to University of California, Davis, researchers.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos