Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NexImmune’s AIM™ Technology Enables Novel Adoptive Immunotherapy Approach for Cancer Treatment

Published: Friday, March 07, 2014
Last Updated: Friday, March 07, 2014
Bookmark and Share
New scientific publication by NexImmune co-founder Dr. Jonathan Schneck.

NexImmune has announced a new scientific publication by NexImmune co-founder Dr. Jonathan Schneck and colleagues that provides an important advance in the use of its proprietary Artificial Immune (AIM™) Technology for cellular therapy of cancer.

The study, published this week in ACS Nano, demonstrated the use of nanoparticle artificial Antigen Presenting Cells (aAPC), a key component of the AIM technology, with applied magnetic fields to activate and expand naive, normally poorly responsive T cell populations. Significantly, activated cells were highly effective for treating cancer in a mouse model system.

Activating naive T cells has been a key, but elusive goal of immunotherapy as these cells are more effective than differentiated T cell subtypes for treating cancer. Once activated, naive T cells have a higher proliferative capacity and a greater ability to generate strong, long-term T cell responses important for immunotherapy.

Thus, this study describes a novel approach whereby AIM aAPC can potentially be coupled to magnetic-field-enhanced activation of T cells to increase the yield and activity of antigen-specific T cells expanded from naive precursors, thereby improving cellular therapy for cancer.

CEO Kenneth Carter commented: “The publication in ACS Nano represents an important advance in the therapeutic potential of the AIM aAPC technology in adoptive cellular therapy involving direct ex-vivo stimulation of patient immune cells. T cells activated by aAPC in a magnetic field inhibited growth of B16 melanoma in mice with significantly improved host survival, thereby demonstrating the clinical relevance of the AIM technology for adoptive immunotherapy.”

The AIM aAPC platform is the foundation for an innovative approach to immunotherapy in which the body’s own immune system is guided by a synthetic particle engineered to activate and orchestrate a targeted immune response.

Central to the AIM technology are aAPC that bypass many of the bottlenecks related to both established and emerging immunotherapies.

AIM aAPC have potential uses as both ex vivo adoptive immunotherapies and as injectable off-the-shelf medicines. NexImmune, Inc. holds an exclusive worldwide license to the AIM aAPC technology from Johns Hopkins University.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Insight into Bacterial Resilience and Antibiotic Targets
Variant of CRISPR technology paired with computerized imaging reveals essential gene networks in bacteria.
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Genes That Increase Children's Risk Of Blood Infection Identified
A team led by Oxford University has identified genes that make certain children more susceptible to invasive bacterial infections by performing a large genome-wide association study in African children.
Poverty Marks a Gene, Predicting Depression
New study of high-risk teens reveals a biological pathway for depression.
World’s Largest Coral Gene Database
‘Genetic toolkit’ will help shed light on which species survive climate change.
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Modified Microalgae Converts Sunlight into Valuable Medicine
A special type of microalgae can soon produce valuable chemicals such as cancer treatment drugs and much more just by harnessing energy from the sun.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
Loss Of Y Chromosome Increases Risk Of Alzheimer’s
Men with blood cells that do not carry the Y chromosome are at greater risk of being diagnosed with Alzheimer’s disease. This is in addition to an increased risk of death from other causes, including many cancers. These new findings by researchers at Uppsala University could lead to a simple test to identify those at risk of developing Alzheimer’s disease.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!