Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

NIH-Funded Atlas Details Gene Activity of the Prenatal Human Brain

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
NIH-funded resource offers clues to psychiatric disorders.

A comprehensive three-dimensional atlas of the developing human brain that incorporates gene activity along with anatomical reference atlases and neuroimaging data has released its first major report online in Nature.

This National Institutes of Health (NIH)-funded resource, freely available to the public, enables researchers to answer questions related to the early roots of brain-based disorders such as autism and schizophrenia.

This big science endeavor, which highlights the transcriptome - when and where genes are turned on in the brain - and anatomy of the human brain during mid-term pregnancy, was undertaken at the Allen Institute for Brain Science in Seattle. It is the first installment of a consortium project funded by the National Institute of Mental Health (NIMH), part of the NIH, called the BrainSpan Atlas of the Developing Human Brain, which aims to profile gene activity throughout the course of brain development.

"Many neuropsychiatric diseases are likely the result of abnormal brain development during prenatal life," said lead author Ed Lein, Ph.D., of the Allen Institute. "An anatomically precise molecular atlas of the brain during this time period is a first step to understanding how the human brain develops normally and what can go wrong."

Although animal studies have provided invaluable insights in the basic mechanisms of brain function, there are limitations that make studies based on human tissues, which are very difficult to obtain, incredibly important.

One key area is the neocortex, the outermost brain region involved in higher functions such as action and thought. The neocortex is smooth in rodents; in humans and non-human primates, it is much more complexly organized, elaborately folded into grooves and wrinkles called sulci and gyri.

Further differences in developmental compartments of this area exist between humans and non-human primates. The aim of this highly detailed atlas was to analyze all genes at this level of granularity, allowing meaningful analysis of the molecular underpinnings of human cortical development. Many psychiatric disorders show altered gene activity in the cortex, possibly highlighting changes that occurred during development of this region.

Lein and other researchers studied four donated, intact, high-quality human prenatal brains from preterm stillbirths - two from 15-16 weeks and two from 21 weeks post-conception - as a framework for their atlas. Contributing labs provided data from a variety of genomic and imaging techniques.

The BrainSpan Atlas aims to inspire new hypotheses regarding human brain development, and has already led to some surprising findings. For example, the study authors found significant differences between mouse and human brains in the subplate zone, a developmentally transient structure critical for proper cortical development.

On the other hand, the researchers expected to find a unique molecular signature for the outer portion of the subventricular zone, an area which is not found in mice and which contains a hugely expanded pool of neuronal stem cells that give rise to our greatly expanded neocortex. Surprisingly, despite its much larger size, no significant differences were found between this zone and the inner portion of this layer that is conserved from mouse to human.

"The BrainSpan Atlas becomes very powerful when one can understand where and when a particular gene is used - for instance, is it active in precursor cells or in the neurons derived from them?" said Lein, who gave the example that autism candidate genes are expressed very early in the cortex. Knowledge of the time and location of these genes may lead to future treatment targets and early interventions for this brain disorder, he added.

The BrainSpan Atlas already is making inroads in research surrounding human brain development and disease.

"Although the many genes associated with autism and schizophrenia don't show a clear relationship to each other in the adult brain, the BrainSpan Atlas reveals how these diverse genes are connected in the developing brain," said NIMH Director Thomas R. Insel, M.D. "Findings of what goes on early in the prenatal brain can lead to the development of biomarkers for diagnosing brain disorders and for matching patients to treatment options most likely to be successful.

"This atlas is a clear example of the progress that can be made when the public and private sectors work together," Insel said. "On this first anniversary of the BRAIN Initiative, we are encouraged to see the impact the BrainSpan Atlas is already making on brain research."

The resource is freely available for viewing, searching, and data mining for gene activity patterns as part of the BrainSpan Atlas of the Developing Human Brain Developing Human Brain (, and can also be found via the Allen Brain Atlas data portal Allen Brain Atlas data portal (

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Researchers Identify Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Saturday, October 31, 2015
Potential Alternative to CRISPR-Cas Genome Editing Tools
New Cas enzymes shed light on evolution of CRISPR-Cas systems.
Friday, October 23, 2015
Charting Genetic Variation Across the Globe
An international team of scientists has created the world’s largest catalog of human genetic differences in populations around the globe.
Tuesday, October 20, 2015
Gene Therapy Staves Off Blindness from Retinitis Pigmentosa in Canine Model
NIH-funded study suggests therapeutic window may extend to later-stage disease.
Tuesday, October 20, 2015
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
NIH Grantees Win 2015 Nobel Prize in Chemistry
The 2015 Nobel Prize in chemistry has been awarded to NIH grantees Paul Modrich, Ph.D., of the Howard Hughes Medical Institute and the Duke University School of Medicine, Durham, N.C.; and Aziz Sancar, M.D., Ph.D., of the University of North Carolina, Chapel Hill, N.C.,.
Thursday, October 08, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
NIH Funding Targets Gaps in Biomedical Research
New awards support emerging issues in cutting-edge biomedical research fields.
Tuesday, October 06, 2015
Scientists Test New Gene Therapy for Vision Loss from a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Dormant Viral Genes May Awaken to Cause ALS
NIH human and mouse study may open an unexplored path for finding treatments.
Thursday, October 01, 2015
Scientists Create World’s Largest Catalog of Human Genomic Variation
An international team of scientists from the 1000 Genomes Project Consortium has created the world’s largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why some people are susceptible to various diseases.
Thursday, October 01, 2015
Genetic Adaptations to Diet and Climate
Researchers found genetic variations in the Inuit of Greenland that reflect adaptations to their specific diet and climate.
Tuesday, September 29, 2015
Scientific News
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos