Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH-Funded Atlas Details Gene Activity of the Prenatal Human Brain

Published: Friday, April 04, 2014
Last Updated: Friday, April 04, 2014
Bookmark and Share
NIH-funded resource offers clues to psychiatric disorders.

A comprehensive three-dimensional atlas of the developing human brain that incorporates gene activity along with anatomical reference atlases and neuroimaging data has released its first major report online in Nature.

This National Institutes of Health (NIH)-funded resource, freely available to the public, enables researchers to answer questions related to the early roots of brain-based disorders such as autism and schizophrenia.

This big science endeavor, which highlights the transcriptome - when and where genes are turned on in the brain - and anatomy of the human brain during mid-term pregnancy, was undertaken at the Allen Institute for Brain Science in Seattle. It is the first installment of a consortium project funded by the National Institute of Mental Health (NIMH), part of the NIH, called the BrainSpan Atlas of the Developing Human Brain, which aims to profile gene activity throughout the course of brain development.

"Many neuropsychiatric diseases are likely the result of abnormal brain development during prenatal life," said lead author Ed Lein, Ph.D., of the Allen Institute. "An anatomically precise molecular atlas of the brain during this time period is a first step to understanding how the human brain develops normally and what can go wrong."

Although animal studies have provided invaluable insights in the basic mechanisms of brain function, there are limitations that make studies based on human tissues, which are very difficult to obtain, incredibly important.

One key area is the neocortex, the outermost brain region involved in higher functions such as action and thought. The neocortex is smooth in rodents; in humans and non-human primates, it is much more complexly organized, elaborately folded into grooves and wrinkles called sulci and gyri.

Further differences in developmental compartments of this area exist between humans and non-human primates. The aim of this highly detailed atlas was to analyze all genes at this level of granularity, allowing meaningful analysis of the molecular underpinnings of human cortical development. Many psychiatric disorders show altered gene activity in the cortex, possibly highlighting changes that occurred during development of this region.

Lein and other researchers studied four donated, intact, high-quality human prenatal brains from preterm stillbirths - two from 15-16 weeks and two from 21 weeks post-conception - as a framework for their atlas. Contributing labs provided data from a variety of genomic and imaging techniques.

The BrainSpan Atlas aims to inspire new hypotheses regarding human brain development, and has already led to some surprising findings. For example, the study authors found significant differences between mouse and human brains in the subplate zone, a developmentally transient structure critical for proper cortical development.

On the other hand, the researchers expected to find a unique molecular signature for the outer portion of the subventricular zone, an area which is not found in mice and which contains a hugely expanded pool of neuronal stem cells that give rise to our greatly expanded neocortex. Surprisingly, despite its much larger size, no significant differences were found between this zone and the inner portion of this layer that is conserved from mouse to human.

"The BrainSpan Atlas becomes very powerful when one can understand where and when a particular gene is used - for instance, is it active in precursor cells or in the neurons derived from them?" said Lein, who gave the example that autism candidate genes are expressed very early in the cortex. Knowledge of the time and location of these genes may lead to future treatment targets and early interventions for this brain disorder, he added.

The BrainSpan Atlas already is making inroads in research surrounding human brain development and disease.

"Although the many genes associated with autism and schizophrenia don't show a clear relationship to each other in the adult brain, the BrainSpan Atlas reveals how these diverse genes are connected in the developing brain," said NIMH Director Thomas R. Insel, M.D. "Findings of what goes on early in the prenatal brain can lead to the development of biomarkers for diagnosing brain disorders and for matching patients to treatment options most likely to be successful.

"This atlas is a clear example of the progress that can be made when the public and private sectors work together," Insel said. "On this first anniversary of the BRAIN Initiative, we are encouraged to see the impact the BrainSpan Atlas is already making on brain research."

The resource is freely available for viewing, searching, and data mining for gene activity patterns as part of the BrainSpan Atlas of the Developing Human Brain Developing Human Brain (http://brainspan.org), and can also be found via the Allen Brain Atlas data portal Allen Brain Atlas data portal (http://www.brain-map.org).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Monday, September 26, 2016
The Genetics of Blood Pressure
Researchers have identifed areas of the genome associated with blood-pressure including 17 previously unknown loci.
Wednesday, September 21, 2016
Catalogue of Human Genetic Diversity Expands
The largest data set of human exomes to date has been assembled to better study seqence variants and their consequences.
Wednesday, September 07, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
New Inflammatory Disease Discovered
NIH researchers have discovered a rare and potentially deadly disease - otulipenia - the mostly affects children.
Tuesday, August 23, 2016
Public Support for National Study
Survey shows the majority of respondents support or show willingness for national precision medicine study.
Thursday, August 18, 2016
Schizophrenia, Autism Share Genetic Causes
Monkey brain developmental atlas pinpoints when, where genes activate.
Tuesday, August 16, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Mutations Linked to Immunotherapy Resistance
Researchers uncover mutations in tumors of three patients with advanced melanoma that allowed the tumors to become resistant to the immune checkpoint inhibitor pembrolizumab (Keytruda®).
Tuesday, August 09, 2016
Genetic Cause of Rare Pediatric Neuropathy Identified
NIH mouse study identifies the mechanism responsible for a rare form of pediatric neuropathy.
Thursday, August 04, 2016
Depression Genetics Insight from Crowd-Sourced Data
Genome sites liked to depression have been discovered from data shared by people who had purchased their genetic profiles online.
Tuesday, August 02, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
NIH Funds Million-Person Medicine Study
NIH announces $55million in awards to build foundations for ambitious Cohort Program that aims to engage 1 million participants in lifestyle, environments and genetics research.
Friday, July 08, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Significant Expansion Of Data Available In The Genomic Data Commons
Cancer genomic profile information from 18,000 adult cancer patients will be added to the database.
Wednesday, June 29, 2016
Scientific News
Faecal Bacteria Linked to Body Fat
Researchers at King’s College London have found a new link between the diversity of bacteria in human poo – known as the human faecal microbiome - and levels of abdominal body fat.
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
How Baby’s Genes Influence Birth Weight And Later Life Disease
The large-scale study could help to target new ways of preventing and treating these diseases.
Modified Yeast Shows Plant Response to Key Hormone
Researchers have developed a toolkit based on modified yeast to determine plant responses to auxin.
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Epigenetic Clock Predicts Life Expectancy
New research finds 5 percent of population ages faster, faces shorter lifespan.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!