Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Application of TAP’s Automated Cell Culture System at AACR

Published: Saturday, April 05, 2014
Last Updated: Saturday, April 05, 2014
Bookmark and Share
Offers rapid production and consistent quality of NCI 60 cancer cell line panel.

TAP Biosystems has announced a new NCI 60 application for its CompacT SelecT™, a system that automates cell culture and processing in T-flasks and microplates. The details of the application, which will deliver a full NCI 60 panel within a working week, are available on Booth 1846 at the AACR.

On the booth, TAP Biosystems’ experts will explain how using an intelligently designed, simple, five-day workflow it is possible to maintain cancer cell line panels, such as the NCI 60, on a CompacT SelecT and also generate assay plates for each cell line during a working week, thus saving thousands of hours of manual cell culture processing tasks.

Pivotal to this workflow are the CompacT SelecT’s integrated cell counter and confluence measurement capabilities. The cell counter ensures seeding density is consistent and regularly scheduled confluence measurements reliably predict when cell lines will reach their ideal harvest conditions.

This allows each flask, irrespective of cell line, to be processed so that flasks are harvested at optimal confluence. Depending on seeding density required for assay plates, harvesting a single T-175 flask could produce sufficient cells for five to ten 96-well plates, as well sufficient cells for seeding new daughter flasks to maintain the cell line.

By linking sequences of work including expansion, media exchanges and plating the system can be set up and run to ensure production of consistent NCI 60 cell line panels, without the need for error prone manual cell culture. This allows researchers constant access to high quality assay-ready cells for research, screening or profiling activities.

Dr Dave Thomas, Product Manager at TAP Biosystems explained: “Maintaining the NCI 60 cell line panel is a very time consuming task. However, because it can be cultured in a common basal media, the reagent requirements are minimal and as doubling times for the majority of the cell lines allow the majority to be passaged on either a three or four day schedule this enabled us to devise a simple five day workflow for culturing and maintaining the entire panel on a single CompacT SelecT.”

Thomas added: “We’re look forward to meeting scientists on Booth 1846 and discussing how this application of the CompacT SelecT could significantly reduce cell culture time and resource demands for researchers, as well as improve the consistency of cells they use in their oncology programmes.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!