Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

InSphero Publishes 3D Tumor-Stroma Model for Non-Small Cell Lung Cancer

Published: Thursday, April 24, 2014
Last Updated: Thursday, April 24, 2014
Bookmark and Share
PLOS One article delivers promising co-culture method to mimic tumor microenvironment, demonstrating potential for biomarker and drug discovery.

InSphero AG, working with researchers at the Medical University Innsbruck, has published a study highlighting development of a novel 3D cell culture model for non-small cell lung cancer (NSCLC), one of the leading causes of cancer deaths in men and women worldwide. The findings, published March 24 in PLOS One, used InSphero's Grav1tyPLUSTM hanging drop  platform to form 3D tumor spheroid co-cultures comprised of a NSCLC tumor cell line and lung-derived fibroblasts. The results showed how both lung cancer cells and stromal cells (lung fibroblasts) behave differently when grown together in 3D than when grown alone. 

The study was initiated in response to the recent failure of several targeted therapies for NSCLC in clinical trials, therapies which were supported by promising in vitro data. To achieve a better in vitro model, researchers used the NSCLC cell lines A549 or Colo699 to create 3D tumors in hanging drops, with or without the lung fibroblast cell line SV80. The tumors were then analyzed for viability, morpology, and expression of different phenotypic markers using immunohistochemistry (IHC) and other methods. Most notable were changes in the tumor cells during co-culture that indicated an epithelial to mesenchymal transition (EMT), as evidenced by an increase in vimentin protein expression, and a decrease in the epithelial cell adhesion protein E-cadherin. Also of interest was the expression of alpha smooth muscle actin (a-SMA), a marker of cancer-associated fibroblasts, in the SV80 fibroblasts only when co-cultured with A549 cells. 

Dr. Jens Kelm, Chief Scientific Officer and co-founder of InSphero AG was co-author on the manuscript He states the 3D co-culture model should improve drug efficacy testing by removing some of the bias inherent in current 2D in vitro models used to screen anti-cancer drugs. "What this 3D lung cancer co-culture model confirmed for us is that tumor cells are phenotypically different in terms of their viability, activity, and morphology when they grow in the presence of fibroblasts. Likewise, the stromal cells associated with tumors also behave differently in co-culture than they do alone, becoming more like myofibroblasts, cells that are known to assist tumor growth, invasion, and metastasis. This model creates an even more native in vitro tumor environment to more easily assess tumor growth, pathobiology, and drug efficacy." 

Using Insphero's automation-compatible, high-throughput platform, the authors plan to conduct advanced screens for improved anti-cancer drugs and to indentify novel NSCLC biomarkers.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
ReadCoor Launched to Commercialize 3D Sequencing Tech
ReadCoor will leverage the Wyss Institute’s method for simultaneously sequencing and mapping RNAs within cells and tissues to advance development of diagnostics.
NCI Collaborates with Multiple Myeloma Research Foundation
NCI collaborates with MMRF to incorporate genomic and clinical data into NCI Genomic Data Commons database.
Regulatory RNA Essential to DNA Damage Response
Researchers discover a tumour suppressor is stabilized by an RNA molecule, which helps cells respond to DNA damage.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Death-or-Repair Switch Protein Identified
Researchers have identified a protein that plays a key role in the decision process of cell damage repair or cellular suicide.
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!