Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mother's Diet Modifies Child's DNA

Published: Wednesday, April 30, 2014
Last Updated: Wednesday, April 30, 2014
Bookmark and Share
Evidence opens up the possibility that a mother’s diet before pregnancy could permanently affect many aspects of her children’s lifelong health.

A mother’s diet before conception can permanently affect how her child’s genes function, according to a study published in Nature Communications.

Researchers from the MRC International Nutrition Group, based at the London School of Hygiene & Tropical Medicine and MRC Unit, The Gambia, utilised a unique ‘experiment of nature’ in rural Gambia, where the population’s dependence on own grown foods and a markedly seasonal climate impose a large difference in people’s dietary patterns between rainy and dry seasons.

Through a selection process involving over 2,000 women, the researchers enrolled pregnant women who conceived at the peak of the rainy season (84 women) and the peak of the dry season (83 women). By measuring the concentrations of nutrients in their blood, and later analysing blood and hair follicle samples from their 2-8 month old infants, they found that a mother’s diet before conception had a significant effect on the properties of her child’s DNA.

While a child’s genes are inherited directly from their parents, how these genes are expressed is controlled through ‘epigenetic’ modifications to the DNA. One such modification involves tagging gene regions with chemical compounds called methyl groups and results in silencing the genes. The addition of these compounds requires key nutrients including folate, vitamins B2, B6 and B12, choline and methionine.

Experiments in animals have already shown that environmental influences before conception can lead to epigenetic changes that affect the offspring. A 2003 study found that a female mouse’s diet can change her offspring’s coat colour by permanently modifying DNA methylation. But until this latest research, funded by the Wellcome Trust and the MRC, it was unknown whether such effects also occur in humans.

Senior author Dr Branwen Hennig, Senior Investigator Scientist at the MRC Gambia Unit and the London School of Hygiene & Tropical Medicine, said: “Our results represent the first demonstration in humans that a mother’s nutritional well-being at the time of conception can change how her child’s genes will be interpreted, with a life-long impact.”

The researchers found that infants from rainy season conceptions had consistently higher rates of methyl groups present in all six genes they studied, and that these were linked to various nutrient levels in the mother’s blood. Strong associations were found with two compounds in particular (homocysteine and cysteine), and the mothers’ body mass index (BMI) had an additional influence. However, although these epigenetic effects were observed, their functional consequences remain unknown.

Andrew Prentice, Professor of International Nutrition at the London School of Hygiene & Tropical Medicine, and head of the Nutrition Theme at the MRC Unit, The Gambia, said: “Our on-going research is yielding strong indications that the methylation machinery can be disrupted by nutrient deficiencies and that this can lead to disease. Our ultimate goal is to define an optimal diet for mothers-to-be that would prevent defects in the methylation process. Pre-conceptional folic acid is already used to prevent defects in embryos. Now our research is pointing towards the need for a cocktail of nutrients, which could come from the diet or from supplements.”

The authors note that their study was limited by including only one blood sampling point during early pregnancy, but estimates of pre-conception nutrient concentrations were calculated using results from non-pregnant women sampled throughout a whole calendar year. The authors also plan to increase the sample size in further studies.

This study was funded by the Wellcome Trust, UK; the Medical Research Council (MRC); the UK Department for International Development (DFID); the NIH/National Institute of Diabetes and Digestive and Kidney Diseases, USA; and the USDA, USA. Additional institutions involved in the study included the University of North Carolina, USA; University of British Columbia, Canada; and SRI International, USA.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Genetic Mutation Could Signal Start Of Malaria Drug Resistance In Africa
Early indicators of the malaria parasite in Africa developing resistance to the most effective drug available have been confirmed, according to new research published in Antimicrobial Agents and Chemotherapy.
Monday, April 20, 2015
Scientific News
Oxygen Can Impair Cancer Immunotherapy in Mice
Researchers at NIH have discovered that the T cells contain a group of oxygen-sensing proteins which act to limit inflammation within the lungs.
Breast Cancer Cells Found To Switch Molecular Characteristics
Spontaneous interconversion between HER2-positive and HER2-negative states could contribute to progression, treatment resistance in breast cancer.
Emerging Model of Cancer
Cancer acts cooperatively, making individual decisions but acting in unison; this insight is being used to create a computer model of cancer.
Biological Barcodes Using CRISPR
Using genome editing tools, researchers are getting closer to understand differentiation of various cell types during development.
Controlling DNA Repair
Scientists discover that DNA repair outcomes following CRISPR-Cas9 cleaving are non-random and can be harnessed to produce desired effects.
Demonstrating LNP Delivery of CRISPR Components
Intellia has presented data demonstrating in vivo gene editing ising liquid nanoparticles (LNPs) to deliver CRISPR/Cas9.
Gene Therapy Via Ultrasound
Research into a gene therapy approach called sonoporation could help combat heart disease and cancer.
Creating Embryos with 'Heteroplasmy'
New discovery in genetic research could lead to treatments for mitochondrial diseases.
Proteins Preserve Vital Genetic Data
Research has shown how two key proteins bring about the oragnization of chromosomes and our genome.
Novel MRI Technique Distinguishes Healthy Prostate Tissue from Cancer
The UTSW researchers have determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!