Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Mother's Diet Modifies Child's DNA

Published: Wednesday, April 30, 2014
Last Updated: Wednesday, April 30, 2014
Bookmark and Share
Evidence opens up the possibility that a mother’s diet before pregnancy could permanently affect many aspects of her children’s lifelong health.

A mother’s diet before conception can permanently affect how her child’s genes function, according to a study published in Nature Communications.

Researchers from the MRC International Nutrition Group, based at the London School of Hygiene & Tropical Medicine and MRC Unit, The Gambia, utilised a unique ‘experiment of nature’ in rural Gambia, where the population’s dependence on own grown foods and a markedly seasonal climate impose a large difference in people’s dietary patterns between rainy and dry seasons.

Through a selection process involving over 2,000 women, the researchers enrolled pregnant women who conceived at the peak of the rainy season (84 women) and the peak of the dry season (83 women). By measuring the concentrations of nutrients in their blood, and later analysing blood and hair follicle samples from their 2-8 month old infants, they found that a mother’s diet before conception had a significant effect on the properties of her child’s DNA.

While a child’s genes are inherited directly from their parents, how these genes are expressed is controlled through ‘epigenetic’ modifications to the DNA. One such modification involves tagging gene regions with chemical compounds called methyl groups and results in silencing the genes. The addition of these compounds requires key nutrients including folate, vitamins B2, B6 and B12, choline and methionine.

Experiments in animals have already shown that environmental influences before conception can lead to epigenetic changes that affect the offspring. A 2003 study found that a female mouse’s diet can change her offspring’s coat colour by permanently modifying DNA methylation. But until this latest research, funded by the Wellcome Trust and the MRC, it was unknown whether such effects also occur in humans.

Senior author Dr Branwen Hennig, Senior Investigator Scientist at the MRC Gambia Unit and the London School of Hygiene & Tropical Medicine, said: “Our results represent the first demonstration in humans that a mother’s nutritional well-being at the time of conception can change how her child’s genes will be interpreted, with a life-long impact.”

The researchers found that infants from rainy season conceptions had consistently higher rates of methyl groups present in all six genes they studied, and that these were linked to various nutrient levels in the mother’s blood. Strong associations were found with two compounds in particular (homocysteine and cysteine), and the mothers’ body mass index (BMI) had an additional influence. However, although these epigenetic effects were observed, their functional consequences remain unknown.

Andrew Prentice, Professor of International Nutrition at the London School of Hygiene & Tropical Medicine, and head of the Nutrition Theme at the MRC Unit, The Gambia, said: “Our on-going research is yielding strong indications that the methylation machinery can be disrupted by nutrient deficiencies and that this can lead to disease. Our ultimate goal is to define an optimal diet for mothers-to-be that would prevent defects in the methylation process. Pre-conceptional folic acid is already used to prevent defects in embryos. Now our research is pointing towards the need for a cocktail of nutrients, which could come from the diet or from supplements.”

The authors note that their study was limited by including only one blood sampling point during early pregnancy, but estimates of pre-conception nutrient concentrations were calculated using results from non-pregnant women sampled throughout a whole calendar year. The authors also plan to increase the sample size in further studies.

This study was funded by the Wellcome Trust, UK; the Medical Research Council (MRC); the UK Department for International Development (DFID); the NIH/National Institute of Diabetes and Digestive and Kidney Diseases, USA; and the USDA, USA. Additional institutions involved in the study included the University of North Carolina, USA; University of British Columbia, Canada; and SRI International, USA.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Genetic Mutation Could Signal Start Of Malaria Drug Resistance In Africa
Early indicators of the malaria parasite in Africa developing resistance to the most effective drug available have been confirmed, according to new research published in Antimicrobial Agents and Chemotherapy.
Monday, April 20, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!