Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Genetic Material Hitchhiking in Our Cells May Shape Physical Traits

Published: Wednesday, May 14, 2014
Last Updated: Wednesday, May 14, 2014
Bookmark and Share
Explaining the connection between genotype and phenotype must also consider genetic material that doesn’t come from an organism’s chromosomes at all.

In 2003, when the human genome had been sequenced, many people expected a welter of new therapies to follow, as biologists identified the genes associated with particular diseases.

But the process that translates genes into proteins turned out to be much more involved than anticipated. Other elements — proteins, snippets of RNA, regions of the genome that act as binding sites, and chemical groups that attach to DNA — also regulate protein production, complicating the relationship between an organism’s genetic blueprint, or genotype, and its physical characteristics, or phenotype.

In the latest issue of the Proceedings of the National Academy of Sciences, researchers from MIT and the Whitehead Institute for Biomedical Research argue that biologists trying to explain the connection between genotype and phenotype need to consider yet another factor: genetic material that doesn’t come from an organism’s chromosomes at all.

Through a combination of clever lab experiments and quantitative analysis, the researchers showed that the consequences of deleting genes in yeast cells can’t be explained without the additional consideration of nonchromoomal genetic material — in particular, from the intracellular bodies known as mitochondria and from viruses that can linger in dividing cells.

“This reinforces the idea that when considering human genetics, we need to consider lots of different factors,” says David Gifford, a professor of computer science and engineering at MIT, who led the quantitative analysis. “We need to understand to what extent viruses can be passed from parent to offspring, as well as understanding the spectrum of mitochondria that are present in humans and their potential interactions with chromosomal mutations.”

Benchtop conundrum

The new work grew out of a fairly standard attempt to analyze the role of a particular group of yeast genes, Gifford explains, by comparing the growth rates of yeast colonies in which these genes had or had not been deleted. But the growth of the colonies with deletions was all over the map: Sometimes it was as robust as in the normal yeast cells, sometimes it was dramatically slower, and often it was in between.

“We couldn’t reproduce many of our findings and found out that as experiments were progressing, this double-stranded RNA virus was being lost in particular strains, although it was having a large influence when it was present,” Gifford says. “We then hypothesized that if this virus was important, it was conceivable that other nonchromosomal genetic elements could be important, and that’s when we started looking at the mitochondria. And our collaborators at the Whitehead Institute designed this very clever way of swapping mitochondria between yeast strains so we could isolate and examine exactly what effect the mitochondria were having.”

Mitochondria are an evolutionary peculiarity. Frequently referred to as the “power plant of the cell” because they produce the chemical fuel adenosine triphosphate, or ATP, they are essential components of almost all plant, animal, and fungus cells. But they have their own genomes, which are distinct from those of their host cells. The leading theory about their origin is that they were originally bacteria that developed a symbiotic relationship with early life forms.

Asserting control

Gerald Fink, the American Cancer Society Professor of Genetics at MIT and a member of the Whitehead Institute, and two researchers in his group — Lindsey Dollard and Anna Symbor-Nagrabska — removed the mitochondria from one of the yeast cells they were studying and allowed it to mate with a cell from a different yeast strain. But they prevented the cells’ nuclei — the repositories of their genetic material — from fusing. Then they forced the new, two-nucleus cell to divide, creating a new strain in which the nucleus of one yeast strain was combined with the mitochondria of the other.

In this way, for each of the genetic deletions the researchers studied, they had strains in which each nuclear state — gene deleted, or left intact — was combined with each of several different types of mitochondria. For each of those strains, they also created variations that were and were not infected with the virus.

Compounded influences

That provided Gifford and his student Matthew Edwards with reliable data, but they still had to make sense of it. Gene deletion alone seemed to explain about 40 percent of the variance they saw in yeast colonies’ growth rates. Gene deletion combined with a blunt categorization of strains according to their nonchromosomal material explained the other 60 percent.

But Gifford and Edwards built a more detailed mathematical model that posited a nonlinearinteraction between the virus and particular strains of mitochondria. That model explained more than 90 percent of the variation they saw — not only in colonies with deleted genes, but in the naturally occurring yeast cells as well.

“You might think that the effect of the chromosomal modification and the effect, for example, of the virus were both important but independent,” Gifford says. “What we found is that they weren’t independent. They were synergistic.”

“At a very high level and at a very conceptual level, what they’re showing is that we should also be looking for heritability and variation in phenotype in regions that are not in the chromosomal DNA,” says Eran Segal, a professor of applied mathematics at the Weizmann Institute in Israel whose group does computational biology. “There’s anecdotal evidence that we’ll see similar things in humans.”

Biologists attempting to fill gaps in our understanding of heritability have offered “plausible explanations, like rare variants and combinations that from a statistical-power point of view are hard to analyze,” Segal says. “Some of the missing heritability is definitely in there.” But the MIT researchers’ paper, he says, “highlights that there may be simpler — simpler in the sense that we can more easily access it — heritability that we can explain maybe by also looking at the nonchromosomal genetic material that human cells carry. With fairly easy techniques, we can access that information, and I think that researchers in the field would be wise to begin to look at it.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,900+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Protecting Privacy in Genomic Databases
System helps ensure databases used in medical research will not leak patients’ personal information.
Wednesday, August 10, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Illuminating Hidden Gene Regulators
New super-resolution technique visualizes important role of short-lived enzyme clusters.
Friday, May 27, 2016
A Programming Language for Living Cells
New language lets researchers design novel biological circuits.
Monday, April 04, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
A New Way to Discover DNA Modifications
Researchers systematically find molecules that help regulate and protect DNA.
Wednesday, March 02, 2016
Mapping Regulatory Elements
Systematically searching DNA for regulatory elements indicates limits of previous thinking
Wednesday, February 03, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
Supply Chain
Chemists discover how a single enzyme maintains a cell’s pool of DNA building blocks.
Wednesday, January 13, 2016
Scientific News
Big Genetics in BC: The American Society for Human Genetics 2016 Meeting
Themes at this year's meeting ranged from the verification, validation, and sharing of data, to the translation of laboratory findings into actionable clinical results.
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
Accelerating the Detection of Foodborne Bacterial Outbreaks
The speed of diagnosis of foodborne bacterial outbreaks could be improved by a new technique developed by researchers at the Georgia Institute of Technology.
Top 10 Life Science Innovations of 2016
2016 has seen the release of some truly innovative products. To help you digest these developments, The Scientist have listed their top picks for the year.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
Secret Phenotypes: Disease Devils in Invisible Details
Algorithmic deep phenotyping exposes masses of hidden traits and possible subtle genetic connections relevant to unseen influences on disease.
Cracking the Code of a Deadly Virus
Researchers have exploited weaknesses in VEEV's genetic code, creating a far less deadly variant.
Hunting the Missing Link Between Genetics and the Environment
The International Phenome Centre Network (IPCN) works to transform healthcare through phenomics - the dynamic interactions between our genes and our environment.
Repurposing Genes for Brain Development
Mammalian bone gene may be repurposed to promote cognition in humans.
Enhancing CRISPR to Explore Further
Researchers have developed sOPTiKO, a more efficient and controllable CRISPR genome editing platform.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!