Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene that Causes Obesity-Related Metabolic Syndrome Identified

Published: Friday, May 16, 2014
Last Updated: Friday, May 16, 2014
Bookmark and Share
Yale-led research has identified a genetic mutation responsible for the cluster of cardiovascular risk factors that comprise the obesity-related “metabolic syndrome.”

Until now, genetic analysis has been successful in identifying mutations that predispose people to individual risk factors. Success has been more limited, however, in mapping mutations responsible for the constellation of disorders that include obesity, high blood pressure, and elevated blood sugar levels that, when combined, greatly increase the risk of cardiovascular disease, heart failure, and diabetes. Together, these conditions are known as metabolic syndrome.

The researchers studied three large families with familial, or inherited central obesity, early-onset coronary artery disease, hypertension, and diabetes. Using whole-exome sequencing, they identified a so-called “founder mutation” — a genetic abnormality that begins in one ancestor and repeats through successive generations of a family.

The mutation was in the gene Dyrk1B, an enzyme that regulates the balance of muscle to fat as well as stable glucose levels by controlling the signaling pathways. When mutated, the researchers found, Dyrk1B inhibited pathways that keep glucose levels stable, and “turned on” the pathways that promote the production of fat on the body.

The mutation was present in all family members affected by metabolic syndrome, and absent in those who were unaffected.

The researchers believe this mutated gene is the likely reason why patients with it have reduced muscle mass but increased fat mass, even at a very young age. “The entire pathway of this gene seems to be linked with glucose and fat metabolism, through the differentiation of stem cells into muscle, bone, cartilage, and fat tissue,” said senior author Dr. Arya Mani, associate professor of cardiology and genetics and member of the Yale Cardiovascular Research Center. “Our findings suggest that mutation in genes that regulate the fate of these cells can result in more fat instead of muscle.”

Mani adds that animal studies suggest the activation of genes like Dyrk1B may actually increase appetite and cause weight gain. Therefore, he notes, because the gene is a protein kinase, which modifies other proteins, it may be an excellent target for potential therapies that restore balance and reduce or eliminate the impact of the genetic mutation.

“The advantage of Dyrk1B as an obesity gene is that its inhibition may not only reduce body weight, but favorably affect other risk factors,” adds first author Dr. Ali Keramati, resident in internal medicine at Yale School of Medicine.

The study appears in the May 15 issue of the New England Journal of Medicine.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Gene Testing Now Allows Precision Medicine for Thoracic Aneurysms
Researchers at the Aortic Institute at Yale have tested the genomes of more than 100 patients with thoracic aortic aneurysms, a potentially lethal condition, and provided genetically personalized care.
Monday, July 20, 2015
After a Sip of Milkshake, Genes and Brain Activity Predict Weight Gain
The new study published in The Journal Neuroscience.
Thursday, May 21, 2015
Gene Editing Corrects Mutation In Cystic Fibrosis
Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.
Monday, April 27, 2015
Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Tsetse Fly Genome Sequenced
Research opens the door to scientific breakthroughs that could reduce or end African sleeping sickness in sub-Saharan Africa.
Friday, April 25, 2014
Deleting Single Gene Reduces Fat in Mice
By deleting a single gene, researchers at Yale University were able to dramatically reduce fat mass in mice while expanding their lifespan by 20%.
Tuesday, March 25, 2014
Genetic Mutation Causes Lupus in Mice
Discovery could open the way for development of therapies that target the mutation.
Tuesday, January 07, 2014
Yale’s Lifton Receives $3 Million Science Prize
Richard Lifton has received a $3 million Breakthrough Prize in Life Sciences, created by top Silicon Valley entrepreneurs.
Monday, December 16, 2013
Follow the Genes: Yale Team Finds Clues to Origin of Autism
A team of researchers has pinpointed which cell types and regions of the developing human brain are affected by gene mutations linked to autism.
Wednesday, November 27, 2013
Yale and Harvard Researchers Rewrite an Entire Genome
Scientists recoded the entire genome of an organism and improved a bacterium’s ability to resist viruses.
Friday, October 18, 2013
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
New Study Changes View about the Genetics of Leukemia Risk
A gene that helps keep blood free of cancer is controlled by tiny pieces of RNA, a finding that may lead to better ways to diagnose blood cancers.
Tuesday, October 15, 2013
Analysis of Little-Explored Regions of Genome Reveals Dozens of Cancer Triggers
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer.
Friday, October 04, 2013
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Ancient Viral Molecules Essential for Human Development
Genetic material from ancient viral infections is critical to human development, according to researchers at the Stanford University School of Medicine.
Tardigrade's Are DNA Master Thieves
Tardigrades, nearly microscopic animals that can survive the harshest of environments, including outer space, hold the record for the animal that has the most foreign DNA.
The Secret Behind the Power of Bacterial Sex
Migration between different communities of bacteria is the key to the type of gene transfer that can lead to the spread of traits such as antibiotic resistance, according to researchers at Oxford University.
Farming’s in Their DNA
Ancient genomes reveal natural selection in action.
GMO Food Animals Should be Judged by Product, Not Process
In a world with a burgeoning demand for meat, milk and eggs, regulatory policies around the use of biotechnologies in agriculture need to be based on the safety and attributes of those foods rather than on the methods used to produce them, says a UC Davis animal scientist.
Enzyme Critical to Maintaining Telomere Length Discovered
New method expected to speed understanding of short telomere diseases and cancer.
Gene Drive Reversibility Introduces New Layer of Biosafety
Ability to introduce or reverse the spread of genetic traits through populations could one day improve pest management and disease control.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos