Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Tool to Study Critical Protein Interaction in Cancer Research

Published: Thursday, July 03, 2014
Last Updated: Thursday, July 03, 2014
Bookmark and Share
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.

A recent study by scientists from the Agency for Science, Technology and Research (A*STAR) is the first to report on the use of fluorescent molecular rotors for cancer drug development. The study was published on 30 April as the cover article in the Journal of The American Chemical Society (JACS).

On the cellular level, cancer is the uncontrolled growth of cells containing damaged or mutated DNA which could result in tumours. p53 is a ‘tumour suppressor protein’ because it functions as the body’s defence against cancer by binding to regulatory sites on the genome and trigger repair mechanisms to the DNA. Alternatively, p53 is also known to initiate a process of apoptosis or programmed cell death.

MDM2 protein is a negative regulator of p53. This means that a high level of MDM2 inhibits the activity of p53 by binding to it and breaking it down; on the other hand, when mutated or damaged DNA is detected, the level of MDM2 falls and allows p53 to initiate DNA repair. The breakdown of the regulatory abilities of MDM2 and p53 will lead to tumours. For instance, an overexpression of MDM2 has been observed in soft tissue sarcomas, gliomas, lymphomas and breast cancer. The study of MDM2-p53 interaction is, therefore, important in cancer research.

In this study, A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells. They found that the fluorescent molecular rotor fluoresces or “lights up” when it is coupled with a short peptide fragment of the MDM2.

Armed with this finding, the scientists screened a library of small molecule fragments for candidates that may potentially disrupt p53-MDM2 binding. They detected a total of 15 hits – eight were validated by an existing method known as fluorescence polarisation and found extra seven which were missed out.

Dr Teo Yin Nah, Research Fellow at A*STAR’s Molecular Engineering Laboratory, said: “Researchers have used molecular rotors as viscosity sensor probes in live cells. This is the first time we have proved that molecular rotors can be used in a different way to understanding molecular interactions that causes cancer. Scientists now have another tool in their arsenal to further our understanding of the MDM2-p53 interaction.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Nature and Nurture: Baby's Development is Affected by Genes and Conditions in the Womb
First attempt to discover how genetic and environmental factors affect the human epigenome.
Tuesday, April 29, 2014
Elephant Shark Genome Provides New Insights into Bone Formation in Humans
A*STAR-led international consortium completely decodes the first shark-family member genome.
Thursday, January 09, 2014
A*STAR Scientists Discover Novel Hormone Essential for Heart Development
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.
Friday, December 06, 2013
A*STAR and NUS Launch Joint Centre
The S$148 million centre will study the role of nutrition and early development in health and disease in Asia.
Thursday, October 10, 2013
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
Scientists at GIS Discover Gene that Controls the Birth of Neurons
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.
Thursday, August 29, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR Scientists Make Discovery of Cell Nucleus Structure Crucial to Understanding Diseases
Genes relocated from their correct position in the nucleus cause them to malfunction and this may lead to the heart, blood vessels and muscles breaking down.
Friday, February 08, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
Scientific News
Genetic Cause of Rare Allergy
Institute has identified a genetic mutation responsible for a rare form of inherited hives induced by vibratory urticaria.
Mitochondria Shown to Trigger Cell Ageing
An international team of scientists has for the first time shown that mitochondria, the batteries of the cells, are essential for ageing.
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Validating the Accuracy of CRISPR-Cas9
IBS Researchers create multiplex Digenome-seq to find errors in CRISPR-Cas9 processes.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
How to Unlock Inaccessible Genes
An international team of biologists has discovered how specialized enzymes remodel the extremely condensed genetic material in the nucleus of cells in order to control which genes can be used.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!