Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Tool to Study Critical Protein Interaction in Cancer Research

Published: Thursday, July 03, 2014
Last Updated: Thursday, July 03, 2014
Bookmark and Share
A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells.

A recent study by scientists from the Agency for Science, Technology and Research (A*STAR) is the first to report on the use of fluorescent molecular rotors for cancer drug development. The study was published on 30 April as the cover article in the Journal of The American Chemical Society (JACS).

On the cellular level, cancer is the uncontrolled growth of cells containing damaged or mutated DNA which could result in tumours. p53 is a ‘tumour suppressor protein’ because it functions as the body’s defence against cancer by binding to regulatory sites on the genome and trigger repair mechanisms to the DNA. Alternatively, p53 is also known to initiate a process of apoptosis or programmed cell death.

MDM2 protein is a negative regulator of p53. This means that a high level of MDM2 inhibits the activity of p53 by binding to it and breaking it down; on the other hand, when mutated or damaged DNA is detected, the level of MDM2 falls and allows p53 to initiate DNA repair. The breakdown of the regulatory abilities of MDM2 and p53 will lead to tumours. For instance, an overexpression of MDM2 has been observed in soft tissue sarcomas, gliomas, lymphomas and breast cancer. The study of MDM2-p53 interaction is, therefore, important in cancer research.

In this study, A*STAR scientists used fluorescent molecular rotors to study protein-protein interactions involving p53 and MDM2 in cells. They found that the fluorescent molecular rotor fluoresces or “lights up” when it is coupled with a short peptide fragment of the MDM2.

Armed with this finding, the scientists screened a library of small molecule fragments for candidates that may potentially disrupt p53-MDM2 binding. They detected a total of 15 hits – eight were validated by an existing method known as fluorescence polarisation and found extra seven which were missed out.

Dr Teo Yin Nah, Research Fellow at A*STAR’s Molecular Engineering Laboratory, said: “Researchers have used molecular rotors as viscosity sensor probes in live cells. This is the first time we have proved that molecular rotors can be used in a different way to understanding molecular interactions that causes cancer. Scientists now have another tool in their arsenal to further our understanding of the MDM2-p53 interaction.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A*STAR Findings on Breast Cancer Hold Potential for New Treatments
Computational techniques to increase understanding of diseases and improve patient treatments.
Friday, October 30, 2015
A*STAR Scientists Discover Gene Critical for Proper Brain Development
This gene accounts for the size of the human brain and potentially our superior cognitive abilities.
Friday, December 26, 2014
Gene Associated with an Aggressive Breast Cancer Identified
Over-expressed gene in triple negative breast cancer offers new diagnostics for risk assessment.
Wednesday, December 03, 2014
Novel Gene Predicts Both Breast Cancer Relapse and Response to Chemotherapy
A predictive marker discovered by scientists at A*STAR and NUS could help doctors classify breast cancer patients for more effective treatment.
Thursday, August 21, 2014
New Possibilities for Leukaemia Therapy with a Novel Mode of Cancer Cell Recognition
A new class of lipids in human leukaemia cells trigger an immune response to kill the cells.
Thursday, June 26, 2014
Nature and Nurture: Baby's Development is Affected by Genes and Conditions in the Womb
First attempt to discover how genetic and environmental factors affect the human epigenome.
Tuesday, April 29, 2014
Elephant Shark Genome Provides New Insights into Bone Formation in Humans
A*STAR-led international consortium completely decodes the first shark-family member genome.
Thursday, January 09, 2014
A*STAR Scientists Discover Novel Hormone Essential for Heart Development
This unusual discovery could aid cardiac repair and provide new therapies to common heart diseases and hypertension.
Friday, December 06, 2013
A*STAR and NUS Launch Joint Centre
The S$148 million centre will study the role of nutrition and early development in health and disease in Asia.
Thursday, October 10, 2013
Scientists Find a Promising Way To Boost The Body’s Immune Surveillance Via p53
Researchers at A*STAR have discovered a new mechanism involving p53, the famous tumour suppressor, to fight against aggressive cancers.
Thursday, September 26, 2013
Singapore Scientists Discover New RNA Processing Pathway Important in hESCs
Discovery of RNA regulator could lead to a better understanding of diseases like cancer and influenza.
Monday, September 09, 2013
Scientists at GIS Discover Gene that Controls the Birth of Neurons
Discovery of long non-coding RNA's role in neurogenesis may lead to cures for diseases such as Alzheimer's disease.
Thursday, August 29, 2013
A*STAR Scientist Alex Matter Awarded Prestigious Szent-Gyorgyi Prize For Progress In Cancer Research
National Foundation for Cancer Research honours Professor Alex Matter with esteemed award for groundbreaking cancer pill that gives leukaemia patients a new lease of life.
Friday, April 05, 2013
A*STAR Scientists Make Discovery of Cell Nucleus Structure Crucial to Understanding Diseases
Genes relocated from their correct position in the nucleus cause them to malfunction and this may lead to the heart, blood vessels and muscles breaking down.
Friday, February 08, 2013
A*STAR's GIS Collaborates with GSK to Further Research on Lung Cancer
Partnership will advance both organizations' joint efforts towards finding a cure for the disease.
Thursday, January 31, 2013
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!