Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Identifies Novel Genomic Changes in the Most Common Type of Lung Cancer

Published: Thursday, July 10, 2014
Last Updated: Thursday, July 10, 2014
Bookmark and Share
TCGA finds mutations in a key cancer-causing pathway, expanding targets for existing drugs.

Researchers from The Cancer Genome Atlas (TCGA) Research Network have identified novel mutations in a well-known cancer-causing pathway in lung adenocarcinoma, the most common subtype of lung cancer.

Knowledge of these genomic changes may expand the number of possible therapeutic targets for this disease and potentially identify a greater number of patients with treatable mutations because many potent cancer drugs that target these mutations already exist.

TCGA is jointly funded and managed by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health. A TCGA analysis of another, less common, form of lung cancer, squamous cell carcinoma, was reported in 2012.

In this new study, published online July 9, 2014, in the journal Nature, researchers examined the genomes, RNA, and some protein from 230 lung adenocarcinoma samples. In three-quarters of the samples, the scientists ultimately identified mutations that put a cell signaling pathway known as the RTK/RAS/RAF pathway into overdrive.

"The integrated nature of TCGA analysis made these findings and their potential therapeutic implications possible," said NIH Director Francis S. Collins, M.D., Ph.D. "We hope this lays the groundwork for future work in precision medicine."

Mutations affecting the RTK/RAS/RAF pathway can cause it to become stuck in the "on" state. As a result, signals that promote cancer cell proliferation and survival are produced continuously. However, some drugs currently available curb aberrant activity of this pathway and prompt therapeutic responses in patients.

"Combined with the earlier TCGA analysis of squamous lung cancers, we now have a comprehensive understanding of many of the genetic pathways that lead to cancers of the lung," said NCI Director Harold Varmus, M.D. "Based on this knowledge, we can now seek better pathway inhibitors to improve patient outcomes. However, for the time being, stopping smoking or never starting remain the most reliable ways to reduce the number of deaths due to lung cancer."

In the group's initial scan of tumor samples, researchers identified gene mutations that would increase RTK/RAS/RAF pathway activity in 62 percent of the samples. The affected genes are oncogenes, or genes that have the potential to cause cancer when mutated or expressed at high levels. Consequently, these tumor samples were classified as oncogene-positive.

To identify additional alterations, the investigators looked at DNA copy number changes, or changes in gene number resulting from the deletion or amplification (multiplication) of sections of DNA in the genome. In doing so, they detected amplification of two oncogenes, ERBB2 and MET, which are part of the RTK/RAS/RAF pathway. Gene amplification usually leads to increased expression of the encoded protein in cells.

Now that these amplifications have been identified, clinicians may be able to treat patients whose tumors have specific gene changes with drugs currently available or under development.

"It is quite striking that we have now identified an actionable mutation in over 75 percent of patients with lung adenocarcinoma, a significant improvement from a decade ago," said Matthew Meyerson, M.D., Ph.D., Harvard Medical School, Dana-Farber Cancer Institute, The Broad Institute, and one of the lead investigators on the project.

Additional analysis identified other genes that may play important roles in lung cancer development. Mutations in one of these genes, NF1, had previously been reported in lung cancer; NF1 is a known tumor suppressor gene that regulates the RTK/RAS/RAF pathway. Mutations in NF1 also put the pathway into overdrive. Another mutated gene, RIT1, is also part of the RTK/RAS/RAF pathway, and this is the first study to associate mutation of this gene with lung cancer.

"This most recent TCGA study again demonstrates the power, depth and breadth of TCGA data," said NHGRI Director Eric Green, M.D., Ph.D. "These results give us important new genomic insights into the development and behavior of an important form of cancer."

In the aggregate, the several forms of lung cancer comprise the most common cause of cancer-related deaths worldwide, with more than 1 million deaths annually. NCI estimates that only 17.5 percent of people diagnosed with lung cancer are still alive five years later.

Lung adenocarcinoma, the most common form of the disease in the United States, develops in tissues near the outer parts of the lungs and can spread widely. Although smoking is the main risk factor, adenocarcinoma is also the most common type of lung cancer among lifelong non-smokers and the risk of lung cancer is increased by 20 percent to 30 percent by exposure to secondhand smoke.

In addition to the two lung cancer studies, the TCGA Research Network has generated data and published analyses on a number of cancers, all of which can be found on the TCGA website, (http://www.cancergenome.nih.gov). TCGA-generated data are freely available at the TCGA Data Portal and CGHub .


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
NIH Sequences Genome of a Fungus
Researchers at the Institute have sequenced genome of human, mouse and rat Pneumocystis that cause life-threatening Pneumonia in immunosuppressed hosts.
Tuesday, April 12, 2016
Decoding Ties Between Vascular Disease, Alzheimer’s
NIH consortium uses big data, team science to uncover complex interplay of factors.
Tuesday, March 15, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Tick Genome Reveals Secrets of a Successful Bloodsucker
NIH-funded study could lead to new tick control methods.
Tuesday, February 09, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Genome-Wide Study Yields Markers of Lithium Response
An international consortium of scientists has identified a stretch of chromosome that is associated with responsiveness to the mood-stabilizing medication lithium among patients with bipolar disorder.
Monday, February 01, 2016
Schizophrenia’s Strongest Known Genetic Risk Deconstructed
Suspect gene may trigger runaway synaptic pruning during adolescence – NIH-funded study.
Thursday, January 28, 2016
NIH Genome Sequencing Program Targets the Genomic Bases of Common, Rare Disease
The National Institutes of Health will fund a set of genome sequencing and analysis centers whose research will focus on understanding the genomic bases of common and rare human diseases.
Friday, January 15, 2016
Three Glaucoma-Related Genes Discovered
NIH-funded genetics analysis of glaucoma is largest to date.
Tuesday, January 12, 2016
International Study Reveals New Genetic Clues to AMD
NIH-funded research provides framework for future studies of AMD biology, therapy.
Tuesday, December 22, 2015
Dementia Linked to Deficient DNA Repair
Mutant forms of breast cancer factor 1 (BRCA1) are associated with breast and ovarian cancers but according to new findings, in the brain the normal BRCA1 gene product may also be linked to Alzheimer’s disease.
Tuesday, December 01, 2015
Batten Disease may Benefit from Gene Therapy
NIH-funded animal study suggests one-shot approach to injecting genes.
Friday, November 13, 2015
NIH Researchers Link Single Gene Variation to Obesity
Variation in the BDNF gene may affect brain’s regulation of appetite, study suggests.
Saturday, October 31, 2015
Scientific News
Cell Transplant Treats Parkinson’s in Mice
A University of Wisconsin—Madison neuroscientist has inserted a genetic switch into nerve cells so a patient can alter their activity by taking designer drugs that would not affect any other cell.
Understanding Female HIV Transmission
Glowing virus maps points of entry through entire female reproductive tract for first time.
Genetic Markers Influence Addiction
Differences in vulnerability to cocaine addiction and relapse linked to both inherited traits and epigenetics, U-M researchers find.
A lncRNA Regulates Repair of DNA Breaks in Breast Cancer Cells
Findings give "new insight" into biology of tough-to-treat breast cancer.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
Computational Model Finds New Protein-Protein Interactions
Researchers at University of Pittsburgh have discovered 500 new protein-protein interactions (PPIs) associated with genes linked to schizophrenia.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Insights into Gene Regulation
Researchers have solved the three-dimensional structure of a gene repression complex that is known to play a role in cancer.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!