Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Patient-Specific Stem Cells and Personalized Gene Therapy

Published: Saturday, July 12, 2014
Last Updated: Saturday, July 12, 2014
Bookmark and Share
Patients’ own cells transformed into model for studying disease and developing potential treatment.

Columbia University Medical Center (CUMC) researchers have created a way to develop personalized gene therapies for patients with retinitis pigmentosa (RP), a leading cause of vision loss.

The approach, the first of its kind, takes advantage of induced pluripotent stem (iPS) cell technology to transform skin cells into retinal cells, which are then used as a patient-specific model for disease study and preclinical testing.

Using this approach, researchers led by Stephen H. Tsang, MD, PhD, showed that a form of RP caused by mutations to the gene MFRP (membrane frizzled-related protein) disrupts the protein that gives retinal cells their structural integrity. They also showed that the effects of these mutations can be reversed with gene therapy. The approach could potentially be used to create personalized therapies for other forms of RP, as well as other genetic diseases. The paper was published recently in the online edition of Molecular Therapy, the official journal of the American Society for Gene & Cell Therapy.

“The use of patient-specific cell lines for testing the efficacy of gene therapy to precisely correct a patient’s genetic deficiency provides yet another tool for advancing the field of personalized medicine,” said Dr. Tsang, the Laszlo Z. Bito Associate Professor of Ophthalmology and associate professor of pathology and cell biology.

While RP can begin during infancy, the first symptoms typically emerge in early adulthood, starting with night blindness. As the disease progresses, affected individuals lose peripheral vision. In later stages, RP destroys photoreceptors in the macula, which is responsible for fine central vision. RP is estimated to affect at least 75,000 people in the United States and 1.5 million worldwide.

More than 60 different genes have been linked to RP, making it difficult to develop models to study the disease. Animal models, though useful, have significant limitations because of interspecies differences. Researchers also use human retinal cells from eye banks to study RP. As these cells reflect the end stage of the disease process, however, they reveal little about how the disease develops. There are no human tissue culture models of RP, as it would dangerous to harvest retinal cells from patients. Finally, human embryonic stem cells could be useful in RP research, but they are fraught with ethical, legal, and technical issues.

The use of iPS technology offers a way around these limitations and concerns. Researchers can induce the patient’s own skin cells to revert to a more basic, embryonic stem cell–like state. Such cells are “pluripotent,” meaning that they can be transformed into specialized cells of various types.

In the current study, the CUMC team used iPS technology to transform skin cells taken from two RP patients-each with a different MFRP mutation-into retinal cells, creating patient-specific models for studying the disease and testing potential therapies.

By analyzing these cells, the researchers found that the primary effect of MFRP mutations is to disrupt the regulation of actin, the protein that makes up the cytoskeleton, the scaffolding that gives the cell its structural integrity. “Normally, the cytoskeleton looks like a series of connected hexagons,” said Dr. Tsang. “If a cell loses this structure, it loses its ability to function.”

The researchers also found that MFRP works in tandem with another gene, CTRP5, and that a balance between the two genes is required for normal actin regulation.

In the next phase of the study, the CUMC team used adeno-associated viruses (AAVs) to introduce normal copies of MFRP into the iPS-derived retinal cells, successfully restoring the cells’ function. The researchers also used gene therapy to “rescue” mice with RP due to MFRP mutations. According to Dr. Tsang, the mice showed long-term improvement in visual function and restoration of photoreceptor numbers.

“This study provides both in vitro and in vivo evidence that vision loss caused by MFRP mutations could potentially be treated through AAV gene therapy,” said coauthor Dieter Egli, PhD, an assistant professor of developmental cell biology (in pediatrics) at CUMC, who is also affiliated with the New York Stem Cell Foundation.

Dr. Tsang thinks this approach could also be used to study other forms of RP. “Through genome-sequencing studies, hundreds of novel genetic spelling mistakes have been associated with RP,” he said. “But until now, we’ve had very few ways to find out whether these actually cause the disease. In principle, iPS cells can help us determine whether these genes do, in fact, cause RP, understand their function, and, ultimately, develop personalized treatments.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Schizophrenia Drug Response Dictated by Genes
Study suggests schizophrenia drug may decrease negative symptoms for people with certain gene variant.
Friday, September 16, 2016
GI Problems in Autism May Originate in Genes
Gene linked to autism lowers serotonin activity in mice, slows movement in gut.
Tuesday, April 26, 2016
Virus Causing Tilapia Die-Offs Identified
Discovery of the virus causing Tilapia die-offs in Israel and Ecuador points the way to protecting a fish that feeds multitudes.
Wednesday, April 06, 2016
Celiac Disease Risk Linked to Non-coding RNA
Suggests factors outside of protein-coding genes play a role in celiac disease.
Friday, April 01, 2016
New Way to Identify Brain Tumor Aggressiveness
Looking at a brain tumor’s epigenetic signature may help guide therapy.
Friday, January 29, 2016
Link Between Congenital Heart, Brain Disorders
Tools of precision medicine may lead to earlier identification and treatment of children with neurodevelopmental disorders.
Thursday, December 10, 2015
DNA Abnormalities Found in Children with Chronic Kidney Disease
Routine genetic screening of children with CKD could lead to earlier, more precise diagnoses.
Tuesday, April 21, 2015
Global Study Discovers Flurry of New Alzheimer’s Genes
An international study has uncovered 11 new genes that increase the chance of developing Alzheimer’s disease and provide new clues to ways of fighting it.
Wednesday, October 30, 2013
Test Could Identify Which Prostate Cancers Require Treatment
3-gene biomarker gauges tumor’s aggressiveness.
Thursday, September 12, 2013
Columbia Licenses Novel 3-D Organ and Tumor Segmentation Software to Varian Medical Systems
Allows for more precise and efficient planning and monitoring of cancer treatment.
Friday, May 17, 2013
Study Shows Why Leukemia Returns in Some Children
With sophisticated new DNA techniques, a team of researchers has found, for the first time, why many children with a type of leukemia suffer a relapse.
Thursday, February 28, 2013
Genes May Predict Response to Sole Sickle Cell Drug
Only one drug is currently available under FDA regulations, but response varies greatly from patient to patient.
Friday, February 22, 2013
Two Treatments for Retinitis Pigmentosa Move Closer to Clinical Trials
One treatment involves skin-derived induced pluripotent stem (iPS) cell grafts, the other gene therapy.
Friday, December 21, 2012
New Prenatal Gene Test Proposed as Standard of Care
Findings Published in NEJM show that microarray finds significantly more clinically relevant information than current method.
Thursday, December 06, 2012
Columbia Awarded One of First NCI “Provocative Questions” Grants
Timothy H. Bestor, PhD, an epigenetics researcher and professor of genetics and development at CUMC, was selected for his proposal, “Methylation Suicide in Cancer”.
Friday, September 21, 2012
Scientific News
Heart Arrhythmia Caused by Mosaic of Mutant Cells
Researchers have solved the genetic mystery of an infant suffering from heart arrhythmia.
Crispr Toolbox Expanded By Protein
Researchers have shown a newly discovered CRISPR protein has two distinct RNA cutting activities.
Genetic Impact of Endurance Training
Research has found that endurance training changes genetic activity in thousands of genes, giving rise to large number of altered RNA variants.
“Sixth Sense” More Than a Feeling
NIH study of rare genetic disorder reveals importance of touch and body awareness.
A Diversity of Genomes
New DNA from understudied groups reveals modern genetic variation, ancient population shifts.
Gene Could Reduce Female Mosquitoes
Virginia Tech researchers have found a gene that can reduce female mosquitoes over many generations.
Improving Crop Efficiency with CRISPR
New study of CRISPR-Cas9 technology from Virginia Tech shows potential to improve crop efficiency.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Bacteria Use Ranking Strategy to Fight Off Viruses
Researchers have explained why microbes store virus confrontation information sequentially, with most recent attacks first.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Skyscraper Banner

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!