Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Scientists Find Six New Genetic Risk Factors for Parkinson’s

Published: Tuesday, July 29, 2014
Last Updated: Tuesday, July 29, 2014
Bookmark and Share
Study shows power of combining big data analysis with cutting-edge genomic techniques.

Using data from over 18,000 patients, scientists have identified more than two dozen genetic risk factors involved in Parkinson’s disease, including six that had not been previously reported. The study, published in Nature Genetics, was partially funded by the National Institutes of Health (NIH) and led by scientists working in NIH laboratories.

“Unraveling the genetic underpinnings of Parkinson’s is vital to understanding the multiple mechanisms involved in this complex disease, and hopefully, may one day lead to effective therapies,” said Andrew Singleton, Ph.D., a scientist at the NIH’s National Institute on Aging (NIA) and senior author of the study.

Dr. Singleton and his colleagues collected and combined data from existing genome-wide association studies (GWAS), which allow scientists to find common variants, or subtle differences, in the genetic codes of large groups of individuals. The combined data included approximately 13,708 Parkinson’s disease cases and 95,282 controls, all of European ancestry.

The investigators identified potential genetic risk variants, which increase the chances that a person may develop Parkinson’s disease. Their results suggested that the more variants a person has, the greater the risk, up to three times higher, for developing the disorder in some cases.

“The study brought together a large international group of investigators from both public and private institutions who were interested in sharing data to accelerate the discovery of genetic risk factors for Parkinson’s disease,” said Margaret Sutherland, Ph.D., a program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of NIH. “The advantage of this collaborative approach is highlighted in the identification of pathways and gene networks that may significantly increase our understanding of Parkinson’s disease.”

To obtain the data, the researchers collaborated with multiple public and private organizations, including the U.S. Department of Defense, the Michael J. Fox Foundation, 23andMe and many international investigators.

Affecting millions of people worldwide, Parkinson’s disease is a degenerative disorder that causes movement problems, including trembling of the hands, arms, or legs, stiffness of limbs and trunk, slowed movements and problems with posture. Over time, patients may have difficulty walking, talking, or completing other simple tasks. Although nine genes have been shown to cause rare forms of Parkinson’s disease, scientists continue to search for genetic risk factors to provide a complete genetic picture of the disorder.

The researchers confirmed the results in another sample of subjects, including 5,353 patients and 5,551 controls. By comparing the genetic regions to sequences on a gene chip called NeuroX, the researchers confirmed that 24 variants represent genetic risk factors for Parkinson’s disease, including six variants that had not been previously identified. The NeuroX gene chip contains the codes of approximately 24,000 common genetic variants thought to be associated with a broad spectrum of neurodegenerative disorders.

“The replication phase of the study demonstrates the utility of the NeuroX chip for unlocking the secrets of neurodegenerative disorders,” said Dr. Sutherland. “The power of these high tech, data-driven genomic methods allows scientists to find the needle in the haystack that may ultimately lead to new treatments.”

Some of the newly identified genetic risk factors are thought to be involved with Gaucher’s disease, regulating inflammation and the nerve cell chemical messenger dopamine as well as alpha-synuclein, a protein that has been shown to accumulate in the brains of some cases of Parkinson’s disease. Further research is needed to determine the roles of the variants identified in this study.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Nuclear Process in the Brain That May Affect Disease Uncovered
Scientists have shown that the passage of molecules through the nucleus of a star-shaped brain cell, called an astrocyte, may play a critical role in health and disease.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Scientists Adopt New Strategy to Find Huntington’s Disease Therapies
Large, international NIH-supported study uses precision medicine to tackle neurological disorders.
Tuesday, August 11, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
NIH Study Identifies Gene Variant Linked to Compulsive Drinking
Mice carrying the Met68BDNF gene variant would consume excessive amounts of alcohol.
Tuesday, July 21, 2015
In Blinding Eye Disease, Trash-Collecting Cells Go Awry, Accelerate Damage
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Friday, July 03, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
A New Role for Zebrafish: Larger Scale Gene Function Studies
A relatively new method of targeting specific DNA sequences in zebrafish could dramatically accelerate the discovery of gene function and the identification of disease genes in humans.
Monday, June 08, 2015
NIH Researchers Pilot Predictive Medicine by Studying Healthy People’s DNA
New study sequence the genomes of healthy participants to find “putative,” or presumed, mutations.
Friday, June 05, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Scientists Create Mice with a Major Genetic Cause of ALS and FTD
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Friday, May 22, 2015
Mice With a Major Genetic Cause of ALS and FTD Created
NIH-funded study provides new platform for testing treatments for several neurodegenerative disorders.
Thursday, May 21, 2015
New Insights into How DNA Differences Influence Gene Activity, Disease Susceptibility
NIH-funded pilot study provides a new resource about variants across the human genome.
Friday, May 08, 2015
Scientific News
Poor Survival Rates in Leukemia Linked to Persistent Genetic Mutations
For patients with an often-deadly form of leukemia, new research suggests that lingering cancer-related mutations – detected after initial treatment with chemotherapy – are associated with an increased risk of relapse and poor survival.
Searching Big Data Faster
Theoretical analysis could expand applications of accelerated searching in biology, other fields.
Growing Hepatitis C in the Lab
Recent discovery allows study of naturally occurring forms of hepatitis C virus (HCV) in the lab.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
How DNA ‘Proofreader’ Proteins Pick and Edit Their Reading Material
Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have discovered how two important proofreader proteins know where to look for errors during DNA replication and how they work together to signal the body’s repair mechanism.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!