Corporate Banner
Satellite Banner
Genomics
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

A New Way to Model Cancer

Published: Monday, August 11, 2014
Last Updated: Monday, August 11, 2014
Bookmark and Share
New gene-editing technique allows scientists to more rapidly study the role of mutations in tumor development.

Sequencing the genomes of tumor cells has revealed thousands of mutations associated with cancer. One way to discover the role of these mutations is to breed a strain of mice that carry the genetic flaw — but breeding such mice is an expensive, time-consuming process.

Now, MIT researchers have found an alternative: They have shown that a gene-editing system called CRISPR can introduce cancer-causing mutations into the livers of adult mice, enabling scientists to screen these mutations much more quickly.

In a study appearing in the Aug. 6 issue of Nature, the researchers generated liver tumors in adult mice by disrupting the tumor suppressor genes p53 and pten. They are now working on ways to deliver the necessary CRISPR components to other organs, allowing them to investigate mutations found in other types of cancer.

“The sequencing of human tumors has revealed hundreds of oncogenes and tumor suppressor genes in different combinations. The flexibility of this technology, as delivery gets better in the future, will give you a way to pretty rapidly test those combinations,” says Institute Professor Phillip Sharp, an author of the paper.

Tyler Jacks, director of MIT’s Koch Institute for Integrative Cancer Research and the David H. Koch Professor of Biology, is the paper’s senior author. The lead authors are Koch Institute postdocs Wen Xue, Sidi Chen, and Hao Yin.

Gene disruption
CRISPR relies on cellular machinery that bacteria use to defend themselves from viral infection. Researchers have copied this bacterial system to create gene-editing complexes that include a DNA-cutting enzyme called Cas9 bound to a short RNA guide strand that is programmed to bind to a specific genome sequence, telling Cas9 where to make its cut.

In some cases, the researchers simply snip out part of a gene to disrupt its function; in others, they also introduce a DNA template strand that encodes a new sequence to replace the deleted DNA.

To investigate the potential usefulness of CRISPR for creating mouse models of cancer, the researchers first used it to knock out p53 and pten, which protect cells from becoming cancerous by regulating cell growth. Previous studies have shown that genetically engineered mice with mutations in both of those genes will develop cancer within a few months.

Studies of such genetically engineered mice have yielded many important discoveries, but the process, which requires introducing mutations into embryonic stem cells, can take more than a year and costs hundreds of thousands of dollars. “It’s a very long process, and the more genes you’re working with, the longer and more complicated it becomes,” Jacks says.

Using Cas enzymes targeted to cut snippets of p53 and pten, the researchers were able to disrupt those two genes in about 3 percent of liver cells, enough to produce liver tumors within three months.

Many models possible
The researchers also used CRISPR to create a mouse model with an oncogene called beta catenin, which makes cells more likely to become cancerous if additional mutations occur later on. To create this model, the researchers had to cut out the normal version of the gene and replace it with an overactive form, which was successful in about 0.5 percent of hepatocytes (the cells that make up most of the liver).

The ability to not only delete genes, but also to replace them with altered versions “really opens up all sorts of new possibilities when you think about the kinds of genes that you would want to mutate in the future,” Jacks says. “Both loss of function and gain of function are possible.”

Using CRISPR to generate tumors should allow scientists to more rapidly study how different genetic mutations interact to produce cancers, as well as the effects of potential drugs on tumors with a specific genetic profile.

“This is a game-changer for the production of engineered strains of human cancer,” says Ronald DePinho, director of the University of Texas MD Anderson Cancer Center, who was not part of the research team. “CRISPR/Cas9 offers the ability to totally ablate gene function in adult mice. Enhanced potential of this powerful technology will be realized with improved delivery methods, the testing of CRISPR/Cas9 efficiency in other organs and tissues, and the use of CRISPR/Cas9 in tumor-prone backgrounds.”

In this study, the researchers delivered the genes necessary for CRISPR through injections into veins in the tails of the mice. While this is an effective way to get genetic material to the liver, it would not work for other organs of interest. However, nanoparticles and other delivery methods now being developed for DNA and RNA could prove more effective in targeting other organs, Sharp says.

The research was funded by the National Institutes of Health and the National Cancer Institute.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Longstanding Problem Put to Rest
Proof that a 40-year-old algorithm for comparing genomes is the best possible will come as a relief to computer scientists.
Thursday, June 11, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Wednesday, March 04, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Tuesday, March 03, 2015
Epigenomics of Alzheimer’s Disease Progression
Study of epigenomic modifications reveals immune basis of Alzheimer's disease.
Thursday, February 19, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
New Device Could Make Large Biological Circuits Practical
Innovation from MIT could allow many biological components to be connected to produce predictable effects.
Tuesday, November 25, 2014
Fast Modeling Of Cancer Mutations
New genome-editing technique enables rapid analysis of genes mutated in tumors.
Thursday, October 23, 2014
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
10X Genomics Releases Linked-Read Data from NIST Genome Samples
Genome in a Bottle Consortium data submission for webinar presentation and public availability.
Environmental Epigenetics Affects Disease, Evolution
Researchers say environmental factors are having an underappreciated effect on the course of disease and evolution by prompting genetic mutations through epigenetics, a process by which genes are turned on and off independent of an organism’s DNA sequence.
Critical New Insights on DNA Repair
The enzyme fumarase is key to reversing genetic damage leading to cancer and therapy resistance.
Nanoparticles Used to Breach Mucus Barrier in Lungs
Proof-of-concept study conducted in mice is a key step toward better treatments for lung diseases.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Genetic Tug of War
Researchers have reported on a version of genetic parental control in mice that is more targeted, and subtle than canonical imprinting.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!