Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hundreds of Biochemical Analyses on a Single Device

Published: Wednesday, September 26, 2012
Last Updated: Wednesday, September 26, 2012
Bookmark and Share
Scientists at EPFL and the University of Geneva have developed a microfluidic device smaller than a domino that can simultaneously measure up to 768 biomolecular interactions.

Inside our cells, molecules are constantly binding and separating from one another. It’s this game of constant flux that drives gene expression asides essentially every other biological process.

Understanding the specific details of how these interactions take place is thus crucial to our overall understanding of the fundamental mechanisms of living organisms. There are millions of possible combinations of molecules, however; determining all of them would be a Herculean task. Various tools have been developed to measure the degree of affinity between a strand of DNA and its transcription factor. They provide an indication of the strength of the affinity between them.

“Commercial” devices, however, have one main drawback: many preliminary manipulations are necessary before an experiment can be carried out, and even then, the experiment can only focus on a dozen interactions at a time.

Microns-wide channels

As part of his doctoral research at the California Institute of Technology (Caltech), Sebastian Maerkl designed a device that he named “MITOMI” – a small device containing hundreds of microfluidic channels equipped with pneumatic valves. This week Maerkl, who is now an assistant professor in EPFL’s Bioengineering Institute, is publishing an article describing the next step in the evolution of the device in Proceedings of the National Academy of Sciences (PNAS). The new version, “k-MITOMI,” was developed in the context of the SystemsX.ch RTD DynamiX in cooperation with the University of Geneva.

This microfluidic device has 768 chambers, each one with a valve that allows DNA and transcription factors to interact in a very carefully controlled manner. “In traditional methods, we generally manage to determine if an interaction takes place or not, and then we restart the experiment with another gene or another transcription factor,” Maerkl explains. “Our device goes much further, because it allows us to measure the affinity and kinetics of the interaction.”

The strength of the device lies in a sort of “push-button” in its microreactors. A protein substrate is immobilized on the device; above it circulates a solution containing DNA moelcules. The push-button is activated at regular intervals of a few milliseconds, trapping protein-DNA complexes that form on the surface of the device. “Then we close the lid, and fluorescence reveals the exact number of bound molecules,” explains Maerkl. “We can also observe how long these molecules remain bound.”

In addition to providing quantitative kinetic information, the k-MITOMI device can work in a “massively parallel” manner. Each of the 768 independent chambers can simultaneously analyze different molecule pairs. It can also be used to synthesize proteins in vitro, with a massive reduction in time and number of manipulations compared to the traditional method, which involves producing proteins inside a living organism such as a bacterium, purifying, and putting them in contact with the genes to be studied.

“The number of protein-protein and protein-DNA interactions that remain to be characterized is phenomenal. Our device not only allows us to accelerate the acquisition of this information, which is crucial to our understanding of living organisms, but it also meets a need for the production of specific proteins,” adds Maerkl.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breath Test For Detecting Head And Neck Cancer
A portable device can detect the presence of certain types of cancer in people's breath.
Monday, April 13, 2015
Scientific News
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
HIV Susceptibility Linked to Little-Understood Immune Cell Class
High levels of diversity among immune cells called natural killer cells may strongly predispose people to infection by HIV, and may be driven by prior viral exposures, according to a new study.
Sweet Revenge Against Superbugs
A special type of synthetic sugar could be the latest weapon in the fight against superbugs.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
Zebrafish Reveal Drugs that may Improve Bone Marrow Transplant
Compounds boost stem cell engraftment; could allow more matches for patients with cancer and blood diseases.
DNA Damage Seen in Patients Undergoing CT Scanning
Along with the burgeoning use of advanced medical imaging tests over the past decade have come rising public health concerns about possible links between low-dose radiation and cancer.
The Light of Fireflies for Medical Diagnostics
EPFL scientists have exploited the light of fireflies in a new method that detects biological molecules without the need for complex devices and high costs.
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!