Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

CYTOO’s 2D+ Cell Culture Platform Reproduces in vivo Conditions to Study Tumor Cell Motility

Published: Thursday, October 18, 2012
Last Updated: Thursday, October 18, 2012
Bookmark and Share
New perspectives in oncology, genetics and drug screening.

CYTOO S.A. announced new results that demonstrate the ability of the Company’s 2D+ Cell Culture Platform to reproduce in vivo conditions to analyze tumor cell motility and in particular to study fibrillar ECM-dependent tumor cell-macrophage pairing and migration involved in tumor metastasis. These results have recently been published in the first issue of the journal IntraVital, edited by Landes Bioscience.

The CYTOO 2D+ Cell Culture Platform is based on the use of adhesive micropatterns to guide cell architecture and behavior in culture, in contrast to current 2D cell culture where cells spread and move in an uncontrolled manner. By defining the 2D topology of cell adhesion, 2D+ Technology enables the fine control of the spreading and 3D shape of cultured cells in single- or multi-cellular configurations resulting in control of cell contractility, cell polarity, organelle positioning, or cell division axis.

Researchers Ved Sharma, Brian Beaty, Antonia Patsialou, Dianne Cox, John Condeelis and Robert Eddy from the Albert Einstein College of Medicine, NY, with collaborators Huiping Liu from University of Chicago and Michael Clarke at Stamford School of Medicine, used CYTOOchipsTM Motility to reconstitute an in vitro model of fibrillar tumor extracellular matrix (ECM). The micropatterned 1D adhesive tracks were used to mimic the linear ECM fibers of the tumor microenvironment.

Similar morphologies, behaviors and motility rates were observed in vivo and on micropatterned lines. In particular, tumor cell velocity on 1D substrates was in agreement with the high velocity values of tumor cells on ECM fibers observed in vivo. In contrast, on classical 2D substrates, motility rates were ten fold lower than what can be observed in vivo. On micropatterned lines, the authors could also reproduce the assembly of alternating tumor cells and macrophages identified as streams in vivo, the ability of macrophages to enhance protrusion velocity and average velocity of tumor cells and showed that this effect was dependent on an intact paracrine loop without any additional need of co-factors.

The authors concluded that their “1D micropatterned substrate model more closely approximates the fibrillar nature of the in vivo tumor microenvironment and offers a simple and more appropriate substrate for detailed analyses of cell protrusion, cell-cell pairing and migration than conventional 2D substrates. The data presented here validates the use of micropatterned 1D adhesive substrates to study the fibrillar ECM found within the tumor microenvironment.”

Co-author Robert Eddy commented “It was a surprise that tumor cell and macrophage streaming behavior we observe in the highly complex tumor microenvironment was self-organizing and required no other extracellular cues on 1D adhesive substrates.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Olivier Pasquier Joins CYTOO as Chief Commercial Officer
Olivier Pasquier first graduated from the French University Nice-Sophia Antipolis in molecular biology. He then completed his background with a marketing MBA from ESCP Europe.
Monday, March 18, 2013
Scientific News
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!