Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Key Molecule Could Reveal Many Cancers Early On

Published: Wednesday, November 07, 2012
Last Updated: Wednesday, November 07, 2012
Bookmark and Share
A technique for monitoring high levels of a protein found in many pre-cancerous cell types – including breast, lung and skin cancer – could be used to detect cancer early.

Their lab study, funded by Cancer Research UK, suggests that the same approach could potentially be used to detect precancerous breast cells, deliver radiotherapy to destroy tumours and monitor the effectiveness of treatment.

The approach makes use of a protein called gamma-H2AX as a marker for DNA damage in an early stage of cancer development.

The Oxford team attached fluorescent markers to an antibody which ‘homes in’ on and attaches to gamma-H2AX. Fluorescent 'snap-shots' of gamma-H2AX then revealed the location of pre-cancerous breast cancer cells at a very early stage.

Professor Katherine Vallis, who led the study at the Gray Institute for Radiation Oncology and Biology at Oxford University, said: 'This early research reveals that tracking this important molecule could allow us to detect DNA damage throughout the body. If larger studies confirm this, the protein could provide a new route to detect cancer at its very earliest stage – when it is easier to treat successfully.'

Previously the Oxford team modified an antibody to target gamma-H2AX and deliver radiotherapy to breast cancer cells which contained high levels of the protein. This form of radiotherapy works by boosting DNA damage until cells can no longer repair mistakes – and die.

The results confirmed that the radioactive antibody killed breast cancer cells and slowed tumour growth.

Professor Vallis added: 'We need to confirm these findings in larger studies before we know if this approach could benefit patients. But these initial results show that it may be possible to track down cells with high levels of DNA damage, and destroy them before they became cancerous.

'One day we may be able to scan the body to map out the radioactive antibodies that have attached to the gamma-H2AX molecule. This could also allow doctors to paint a useful picture of how effective a treatment is.'

Dr Julie Sharp, Cancer Research UK’s senior science information manager, said: 'This important study reveals that targeting this key molecule could provide an exciting route for new ways to detect cancer at an earlier stage – and help to deliver radiotherapy and monitor its effect on tumours.'


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

First IVF Baby with New Embryo Screening Technique
The method uses the latest DNA sequencing techniques and aims to increase IVF success rates while being more affordable.
Tuesday, July 09, 2013
Accelerating Drug Development
Professor Adrian Harris is currently leading a new type of trial to accelerate multi-agent drug development.
Tuesday, March 12, 2013
Scientific News
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
Using Gene-editing Technology for Faster, Cheaper Antiviral Drug Development
UCLA scientists are working to develop special screening libraries based on a gene-editing technology called CRISPR.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!