Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Short DNA Strands in the Genome May be Key to Understanding Human Cognition and Diseases

Published: Monday, November 26, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Previously discarded, human-specific “junk” DNA represents untapped resource in the study of diseases like Alzheimer’s and autism.

Short snippets of DNA found in human brain tissue provide new insight into human cognitive function and risk for developing certain neurological diseases, according to researchers from the Departments of Psychiatry and Neuroscience at Mount Sinai School of Medicine. The findings are published in the November 20th issue of PLoS Biology.

There are nearly 40 million positions in the human genome with DNA sequences that are different than those in non-human primates, making the task of learning which are important and which are inconsequential a challenge for scientists. Rather than comparing these sequences strand by strand, Schahram Akbarian, MD, PhD, Professor of Psychiatry and Neuroscience at Mount Sinai School of Medicine, wanted to identify the crucial set of differences between the two genomes by looking more broadly at the chromatin, the structure that packages the DNA and controls how it is expressed.

They found hundreds of regions throughout the human genome which showed a markedly different chromatin structure in neurons in the prefrontal cortex, a brain region that controls complex emotional and cognitive behavior, compared to non-human primates. The findings of the study provide important insights for diseases that are unique to humans such as Alzheimer's disease and autism.

"While mapping the human genome has taught us a great deal about human biology, the emerging field of epigenomics may help us identify previously overlooked or discarded sequences that are key to understanding disease," said Dr. Akbarian. "We identified hundreds of loci that represent untapped areas of study that may have therapeutic potential."

Dr. Akbarian and his research team isolated small snippets of chromatin fibers from the prefrontal cortex. Next, they analyzed these snippets to determine what genetic signals they were expressing. Many of the sequences with human-specific epigenetic characteristics were, until recently, considered to be "junk DNA" with no particular function.

Now, they present new leads on how the human brain has evolved, and a starting point for studying neurological diseases. For example, the sequence of DPP10—a gene critically important for normal human brain development—not only showed distinct human-specific chromatin structures different from other primate brains such as the chimpanzee or the macaque, but the underlying DNA sequence showed some interesting differences from two extinct primates—the Neanderthal and Denisovan, most closely related to our own species and also referred to as ‘archaic hominins'.

"Many neurological disorders are unique to human and are very hard as a clinical syndrome to study in animals, such as Alzheimer's disease, autism, and depression," said Dr. Akbarian. "By studying epigenetics we can learn more about those unique pieces of the human genome."

The research team also discovered that several of these chromatin regions appear to physically interact with each other inside the cell nucleus, despite being separated by hundreds of thousands of DNA strands on the genome. This phenomenon of "chromatin looping" appears to control the expression of neighboring genes, including several with a critical role for human brain development.

"There is growing consensus among genome researchers that much of what was previously considered as ‘junk sequences' in our genomes indeed could play some sort of regulatory role," said Dr. Akbarian.

This study was supported by grants from the National Institutes of Health. Dr. Akbarian plans to do more epigenetic studies in other areas of the brain to see if there are additional chromatin regions that are unique to humans. They also plan to study the epigenomes of other mammals with highly evolved social behaviors such as elephants.

Dr. Akbarian joined Mount Sinai in July 2012. He is internationally known for his cutting-edge research on the epigenetic mechanisms of psychiatric disorders. He is a widely recognized expert in advanced chromatin tools—many of which were developed in his laboratory—in conjunction with mouse mutagenesis and behavioral models of mental illness to bridge molecular, cellular, and behavioral investigations. He is also a renowned authority on the epigenetic analysis of human brain tissue examined postmortem.

Prior to joining Mount Sinai, Dr. Akbarian was Director of the Brudnick Neuropsychiatric Research Institute. He received his medical and doctorate degrees from the Freie Universitaet Berlin. Dr. Akbarian completed his postdoctoral training in neuroscience at the University of California at Irvine and the Whitehead Institute, and his residency in psychiatry at Massachusetts General Hospital.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.
Preventing "Friendly Fire" in the Pancreas
Researchers inhibit process that leads to the body attacking its own insulin-producing cells.
Drug Target for Triple-Negative Breast Cancer Found
A team of researchers led by UC San Francisco scientists has identified a new drug target for triple-negative breast cancer.
Smartphone Laboratory Detects Cancer
Researchers develop low-cost, portable laboratory on a smartphonecapable of analysing multiple samples simultaneously.
First Entirely 3D-printed Organ-on-a-Chip with Integrated Sensors
New approach to manufacturing may allow researchers to rapidly design organs-on-chips that match the properties of a specific disease or individual patient's cells.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos