Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Hope for Setback-dogged Cancer Treatment

Published: Wednesday, November 28, 2012
Last Updated: Wednesday, November 28, 2012
Bookmark and Share
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.

Several drugs companies have ineffectively tried to produce antibodies that bind to the IGF-1 receptor on the cell surface, which has a critical part to play in the development of cancer. Scientists at Karolinska Institutet have now ascertained how these antibodies work, and can explain why only some cancer patients are helped by IGF-1 blockers during clinical tests. The researchers also present a means by which drugs of this kind could help more cancer patients.

Every cell contains thousands of tiny receptors that help it communicate with other cells. These receptors are involved in countless physiological processes, such as taste and smell perception and heart rate. A couple of dozen of these receptors form their own family - the kinase receptors (RTKs), which are implicated in cancer. The so-called IGF-1 receptor is particularly important for cancer cell survival, and as soon as this receptor encounters the right hormone (type 1 insulin-like growth factor, or IGF-1) into the cancer cell open a number of communication channels, helping it to grow, rapidly divide and protect itself against treatment.

Blocking this receptor with an antibody that binds to it and makes it inaccessible to IGF-1 has long been regarded as the key to a potential cancer therapy, the idea being that it will eventually lead to the death of the tumour cell. Several drugs companies have therefore been developing such antibodies in order to treat the most aggressive forms of cancer, and after some promising laboratory tests, have tested a number of these preparations on patients. However, the drugs have generally given disappointing results and helped only a small minority of patients (including children with Ewing's sarcoma), leading some companies to discontinue clinical trials focusing on the IGF-1 receptor.

The Karolinska Institutet team has now systematically analysed the different IGF-1-related triggered communication channels within a cancer cell. Their results show that the original idea is correct and that such antibody treatment does actually stop the channels from opening, with one very important exception: the MEK channel was actually powerfully stimulated by the treatment - the antibodies being as effective in this as the hormone itself - and actively helped the cancer cells to survive.

"This gives us a credible explanation why the antibody trials for the IGF-1 receptor weren't as effective as had been hoped," says principal investigator Dr Leonard Girnita, docent of pathology at Karolinska Institutet s Department of Oncology-Pathology. "So it's too early to give up on the idea of treating cancer like this   it's still a very good way of attacking the cancer, provided we can close this final communication channel. If we can do this, antibodies for the IGF-1 receptor are likely to form an effective treatment not only for Ewing's sarcoma in children but many other cancers as well."

Drugs that are used to close this channel in other forms of treatments are already available. The researchers believe that a combination therapy using such MEK inhibitors with IGF-1 blockers can be the key to releasing the potential of this therapy model.

"We've seen in the laboratory that cell lines treated in this way no longer manage to divide," says Dr Girnita. "When they die of old age there is no regrowth, so we ve seen in the laboratory environment how cancer cells die out of their own accord."

The study was financed with grants from the Swedish Cancer Society, the Swedish Research Council, the Children's Cancer Foundation, the Crown Princess Margareta Fund for the Visually Impaired, the Welander/Finsen foundations, the King Gustaf V Jubilee Fund, Vinnova (The Swedish governmental agency for innovation systems), the Cancer Research Funds of Radiumhemmet, Stockholm County Council and Karolinska Institutet.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

A New Method Simplifies Blood Biomarker Discovery And Analysis
Scientists at Karolinska Institutet in collaboration with Estonian Competence Centre on Health Technologies have developed a new gene expression analysis method to widen the usage of blood in biomarker discovery and analysis.
Tuesday, August 16, 2016
New Mechanism Discovered Behind Infant Epilepsy
Scientists at Karolinska Institutet and Karolinska University Hospital have discovered a new explanation for severe early infant epilepsy.
Monday, September 07, 2015
Technological Breakthrough Paves the Way for Better Drugs
Researchers have developed the first method for directly measuring the extent to which drugs reach their targets in the cell.
Monday, July 08, 2013
Scientific News
Stem Cells in Drug Discovery
Potential Source of Unlimited Human Test Cells, but Roadblocks Remain.
Automated Low Volume Dispensing Trends
Gain a better understanding of the current and future market requirements for fully automated LVD systems.
Protein-Based “Cancer Signature” Uncovered
Researchers investigated the expression of ribosomal proteins in human tissues and discovered a cancer type specific signature which could be used to predict the progression of the disease.
Ribosome Recycling as a Drug Target
Researchers explain mechanism that recycles bacterial ribosomes stalled on messenger RNAs that lack termination codons.
Predicting Leukaemia Development in Cancer Patients
Biomarker may predict which formerly treated cancer patients will develop highly fatal form of leukemia.
Survey of New York City Soil Uncovers Medicine-Making Microbes
Microbes have long been an invaluable source of new drugs. And to find more, we may have to look no further than the ground beneath our feet.
'Lab on the Skin' for Sweat Analysis
Northwestern University researchers develop a low-cost wearable electronic device that collects and analyzes sweat for health monitoring.
Toxoplasma’s Balancing Act Explained
Parasite’s method of rewiring our immune response leads to novel tool for drug tests.
Cancer Signaling Pathway Illuminating Way To Therapy
Researchers refine a pro-growth signalling pathway, common to cancers, that can kill cancer cells while leaving healthy cells unharmed.
Breast Cancer Cells Starve for Cystine
Depriving triple negative breast cancer, a treatment-resistant form of breast cancer, of cystine results in cancer cell death.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!