Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

AMSBIO Launches 3D Culture 96-Well BME Cell Invasion Assay

Published: Monday, January 07, 2013
Last Updated: Monday, January 07, 2013
Bookmark and Share
Integrating matrix into 3D spheroid culture enables high throughput measurement of cell invasion.

AMSBIO has announced the launch of the 3D Culture 96-Well BME Cell Invasion Assay to address the growing need for more complete and physiologically predictive cancer invasion models.

Invasive migration is a fundamental function underlying cellular processes such as angiogenesis, embryonic development, immune response, metastasis, and invasion of cancer cells.

AMSBIO's new 3D Culture 96-Well BME Cell Invasion Assay offers a flexible, standardized, high-throughput format for quantitating the degree to which invasive cells in 3D spheroid cultures penetrate a barrier consisting of basement membrane components in response to chemo attractants and/or inhibiting compounds.

There is growing evidence that tumor cell aggregates or spheroids provide a more representative model of tumors in vivo than can be achieved with conventional adherent monolayers.

Such spheroids exhibit several relevant physiological traits including similar morphology, the formation of cell-cell bonds, decreased proliferation rates, increased cell survival, tumor dormancy, and a hypoxic core.

Applying this model to in a 3D culture invasion assay provides a more physiological approach for assessing tumor invasion and providing a visual component that can be quantitated through image analysis.

The new 3D Culture 96 Well BME Cell Invasion Assay uses a 3D Culture Qualified 96-Well Spheroid Formation Plate alongside a specialized Spheroid Formation extracellular matrix to drive aggregation and/or spheroid formation of cells.

Upon completion of spheroid formation, the spheroid is embedded in an invasion matrix composed of basement membrane proteins. This matrix forms a hydrogel network on which invasive cells can travel.

At this point, invasion modulating agents can be applied to the system to evaluate the impact on cell response.

Cell invasion is visualized microscopically and can be quantitated through image analysis software.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Ready-to-Use Tagged cDNA Clones
Available from AMSBIO TrueORF®cDNA clones are tagged cDNA clones for protein studies.
Monday, June 01, 2015
AMSBIO Publishes Comprehensive Cell Culture Handbook
Extensive 48-page handbook is intended for research scientists looking to culture cells in more physiologically relevant environments.
Friday, April 04, 2014
AMSBIO & Sanguine Biosciences Announce Distribution Agreement
Agreement to distribute and support AMSBIO’s products and services throughout Europe.
Friday, August 23, 2013
Scientific News
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Honey’s Potential to Save Lives
The healing powers of honey have been known for thousands of years.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!