Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Imaging Biomarker Predicts Response to Rapid Antidepressant

Published: Wednesday, February 06, 2013
Last Updated: Tuesday, February 05, 2013
Bookmark and Share
Signals dysfunction in brain system targeted by scopolamine - NIH study.

A telltale boost of activity at the back of the brain while processing emotional information predicted whether depressed patients would respond to an experimental rapid-acting antidepressant, a National Institutes of Health study has found.

"We have discovered a potential neuroimaging biomarker that may eventually help to personalize treatment selection by revealing brain-based differences between patients," explained Maura Furey, Ph.D., of NIH's National Institute of Mental Health (NIMH).

Furey, NIMH's Carlos Zarate, M.D., and colleagues, reported on their functional magnetic resonance imaging (fMRI) study of a pre-treatment biomarker for the antidepressant response to scopolamine (http://www.nimh.nih.gov/science-news/2006/nimh-researchers-discover-medications-antidepressant-potential.shtml), Jan. 30, 2013, online in JAMA Psychiatry.

Scopolamine, better known as a treatment for motion sickness, has been under study (http://projectreporter.nih.gov/project_info_description.cfm?aid=8556944&icde=15145736&ddparam=&ddvalue=&ddsub=&cr=2&csb=default&cs=ASC) since Furey and colleagues discovered its fast-acting antidepressant properties in 2006.

Unlike ketamine (http://www.nimh.nih.gov/science-news/2012/brain-signal-ids-responders-to-fast-acting-antidepressant.shtml), scopolamine works through the brain's acetylcholine chemical messenger system.

The NIMH team's research has demonstrated that by blocking receptors for acetylcholine on neurons, scopolamine can lift depression in many patients within a few days; conventional antidepressants typically take weeks to work. But not all patients respond, spurring interest in a predictive biomarker.

The acetylcholine system plays a pivotal role in working memory, holding information in mind temporarily, but appears to act by influencing the processing of information rather than through memory.

Imaging studies suggest that visual working memory performance can be enhanced by modulating acetylcholine-induced activity in the brain's visual processing area, called the visual cortex, when processing information that is important to the task.

Since working memory performance can predict response to conventional antidepressants and ketamine, Furey and colleagues turned to a working memory task and imaging visual cortex activity as potential tools to identify a biomarker for scopolamine response.

Depressed patients have a well-known tendency to process and remember negative emotional information. The researchers propose that this bias stems from dysregulated acetylcholine systems in some patients.

They reasoned that such patients would show aberrant visual cortex activity in response to negative emotional features of a working memory task. They also expected to find that patients with more dysfunctional acetylcholine systems would respond better to scopolamine treatment.

Before receiving scopolamine, participants performed a working memory task while their brain activity was monitored via fMRI. For some trials, it required that they pay attention to, and remember, the emotional expression (sad, happy, etc.) of faces flashing on a computer monitor.

For other trials, they had to pay attention to only the identity, or non-emotional feature, of the faces. After scanning, and over the following several weeks, 15 patients with depression and 21 healthy participants randomly received infusions of a placebo (salt solution) and/or scopolamine. Mood changes were monitored with depression rating scales.

Overall, scopolamine treatment reduced depression symptoms by 63 percent, with 11 of the patients showing a significant clinical response.

The strength of this response correlated significantly with visual cortex activity during key phases of the working memory task - while participants were paying attention to the emotional content of the faces. There was no such correlation for trials when they attended to the identity of the faces.

The findings suggest that acetylcholine system activity drives visual cortex activity that predicts treatment response - and that differences seen between depressed patients and controls may be traceable to acetylcholine dysfunction.

Overall, patients showed lower visual cortex activity than controls during the emotion phase of the task. Patients showing activity levels most dissimilar to controls experienced the greatest antidepressant response to scopolamine treatment.

Visual cortex activity in patients who didn't respond to scopolamine more closely resembled that of controls. As hypothesized, the pretreatment level of visual cortex activity appears to reflect the extent of patients' acetylcholine system dysfunction and to predict their response to the experimental medication, say the researchers.

Preliminary evidence suggests that such visual cortex activity in response to emotional stimuli may also apply to other treatments and may prove to be a shared biomarker of rapid antidepressant response, according to Furey.

The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
Wednesday, September 14, 2016
Finding Compounds That Inhibit Zika
Researchers identified compounds that inhibit the Zika virus and reduce its ability to kill brain cells.
Wednesday, September 14, 2016
Seeking Innovation to Combat Antimicrobial Resistance
Federal prize competition, with $20 million in prizes, seeks to develop new laboratory diagnostic tools to detect and distinguish antibiotic resistant bacteria.
Friday, September 09, 2016
$12.4M Awarded to Neural Regeneration Projects
The National Institutes of Health will fund six projects to identify biological factors that influence neural regeneration.
Friday, September 02, 2016
How Parkinson’s Disease Alters Brain Activity Over Time
The NIH study provides a new tool for testing experimental medications aimed at alleviating symptoms and slowing the rate at which the diseases damage the brain.
Tuesday, August 16, 2016
Developing Software for Drug Development
NIH-led researchers develop software that could facilitate drug development to identify molecules that bind with high precision to targets of interest.
Monday, August 01, 2016
Molecule May Affect Gaucher, Parkinson's Disease
Research has identified a molecule that restores activity of a dysfunctional enzyme linked to Gaucher and Parkinson's disease.
Wednesday, July 27, 2016
Treatment Advancement for Gaucher and Parkinson's Diseases
NIH scientists identify molecule that may act as a possible treatment of neurological diseases.
Wednesday, July 13, 2016
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Friday, May 27, 2016
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
One Step Closer to Precision Medicine for Chronic Lung Disease Sufferers
A study led by University of North Carolina at Chapel Hill, and National Jewish Health, has provided evidence of links between SNPs and known COPD blood protein biomarkers.
Peer Reviewed Study Demonstrates Mass Spec Technique
The peer reviewed study demonstrates MS workflow, TMTCalibrator workflow, which dramatically enhances detection of key early stage Alzheimer’s biomarkers.
Small Molecules Lead to Big Change in Reaction Outcomes
Scientists have changed the behaviour of a group of molecules involved in carbon-oxygen bond synthesis.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
Sanger Institute, St Jude Data-Sharing Agreement
Childhood cancer targeted by Sanger Institute and St Jude Children’s Research Hospital exchanges of cancer data
Over Two-Thirds of Cervical Cancer Deaths Prevented
Cervical screening prevents 70% of cervical cancer deaths and if all eligible women regularly attended screening this would rise to 83%.
Space Research Fighting Cancer
JPL and National Cancer Institute renew Big Data partnership that 'learns' data similarities.
Uncovering the Genetics Behind High Blood Pressure
Results suggest a role for blood vessels themselves in controlling blood pressure.
Detecting Bacterial Infections in Newborns
Researchers tested an alternative way to diagnose bacterial infections in infants—by analyzing RNA biosignatures from a small blood sample.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!