Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Tool in the Fight against Tropical Diseases

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
A novel tool exploits baker's yeast to expedite the development of new drugs to fight multiple tropical diseases.

The unique screening method uses yeasts which have been genetically engineered to express parasite and human proteins to identify chemical compounds that target disease-causing parasites but do not affect their human hosts.

Parasitic diseases affect millions of people annually, often in the most deprived parts of the world. Every year, malaria alone infects over 200 million people, killing an estimated 655,000 individuals, mostly under the age of five. Unfortunately, our ability to treat malaria, which is caused by Plasmodium parasites, has been compromised by the emergence of parasites that are resistant to the most commonly used drugs. There is also a pressing need for new treatments targeting other parasitic diseases, which have historically been neglected.

Currently, drug-screening methods for these diseases use live, whole parasites. However, this method has several limitations. First, it may be extremely difficult or impossible to grow the parasite, or at least one of its life cycle stages, outside of an animal host. (For example, the parasite Plasmodium vivax, responsible for the majority of cases of malaria in South America and South-East Asia, cannot be continuously cultivated in laboratory conditions.) Second, the current methods give no insight into how the compound interacts with the parasite or the toxicity of the compound to humans.

In an effort to develop new drugs to fight parasitic diseases, scientists from the University of Cambridge have collaborated with computer scientists at Manchester University to create a cheaper and more efficient anti-parasitic drug-screening method. The clever screening method identifies chemical compounds which target the enzymes from parasites but not those from their human hosts, thus enabling the early elimination of compounds with potential side effects.

Professor Steve Oliver, from the Cambridge Systems Biology Centre and Department of Biochemistry at the University of Cambridge, said: "Our screening method provides a faster and cheaper approach that complements the use of whole parasites for screening. This means that fewer experiments involving the parasites themselves, often in infected animals, need to be carried out."

The new method uses genetically engineered baker's yeast, which either expresses important parasite proteins or their human counterparts. The different yeast cells are labelled with fluorescent proteins to monitor the growth of the individual yeast strains while they grow in competition with one another. High-throughput is provided by growing three to four different yeast strains together in the presence of each candidate compound. This approach also provides high sensitivity (since drug-sensitive yeasts will lose out to drug-resistant strains in the competition for nutrients), reduces costs, and is highly reproducible.

The scientists can then identify the chemical compounds that inhibit the growth of the yeast strains carrying parasite-drug targets, but fail to inhibit the corresponding human protein (thus excluding compounds that would cause side-effects for humans taking the drugs). The compounds can then be explored for further development into anti-parasitic drugs.

In order to demonstrate the effectiveness of their screening tool, the scientists tested it on Trypanosoma brucei, the parasite that causes African sleeping sickness. By using the engineered yeasts to screen for chemicals that would be effective against this parasite, they identified potential compounds and tested them on live parasites cultivated in the lab. Of the 36 compounds tested, 60% were able to kill or severely inhibit the growth of the parasites (under standard lab conditions).

Dr Elizabeth Bilsland, the lead author of the paper from the University of Cambridge, said: "This study is only a beginning. It demonstrates that we can engineer a model organism, yeast, to mimic a disease organism and exploit this technology to perform low-cost, fully-automated drug screens to select and optimise drug candidates as well as identify and validate novel drug targets.

"In the future, we hope to engineer entire pathways from pathogens into yeast and also to construct yeast strains that mimic diseased states of human cells."

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,100+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

£4.5M Newton Fund to Tackle Antimicrobial Resistance
Six research partnerships tackling the rise of anti-microbial resistance (AMR) have been created with £4.5M investment by the UK Research Councils.
Wednesday, August 31, 2016
Andy Richards receives BIA Lifetime Achievement Award
BBSRC Council member and life sciences entrepreneur Dr Andy Richards has received the BioIndustry Association (BIA) Lifetime Achievement Award.
Wednesday, February 13, 2013
UK Bioscience Sparkles with New Diamond Fellowship
UK bioscience has received a major boost following the announcement of 16 new fellowships by the Biotechnology and Biological Sciences Research Council (BBSRC) including the first ever Diamond Fellowship, so named because the post will be based at the new Research Complex at Harwell, adjacent to the Diamond Light Source in Oxfordshire - the UK national synchrotron facility.
Tuesday, July 21, 2009
Scientific News
Mass Spec Technology Drives Innovation Across the Biopharma Workflow
With greater resolving power, analytical speed, and accuracy, new mass spectrometry technology and techniques are infiltrating the biopharmaceuticals workflow.
Less Frequent Cervical Cancer Screening
HPV-vaccinated women may only need one screening every 5 to 10 years with screening starting later in life.
Targeting Cannabinoid CB2 Receptors in the CNS
With endogenous cannabinoids considered as a potential target to combat CNS diseases, this article examines the role of CB2R could play in fighting some disorders.
Bacterial Genes Boost Current in Human Cells
Borrowing and tweaking bacterial genes to enhance electrical activity might treat heart, nervous system injury.
Cocoa Compound Linked to Some Cardiovascular Biomarker Improvements
The study highlights the urgent need for large, long-term RCTs that improve understanding of how the short-term benefits of cocoa flavanol intake on cardiometabolic biomarkers may be translated into clinical outcomes.
Untangling a Cause of Memory Loss in Neurodegenerative Diseases
The mouse study identifies a possible therapeutic target for a family of disorders.
New Pathway for COPD Biomarker Development
A study from Philip Morris International has highlighted multi-lipid profiling as a potential new pathway for COPD biomarker development.
Stiffening a Blow to Cancer Cells
Researchers develop a way to predict how a tumor tissue's physical properties affect its response to chemotherapy drugs.
Anti-Cancer Drug Uses Tumour mRNA to Identify Responders
Phase I study of novel anti-cancer drug uses tumour mRNA expression to identify patients who will respond to the drug.
New Strategy for Choosing Cancer Drugs
Device can predict tumor responses by measuring cell growth after drug exposure.
Skyscraper Banner

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,100+ scientific videos