Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Tool in the Fight against Tropical Diseases

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
A novel tool exploits baker's yeast to expedite the development of new drugs to fight multiple tropical diseases.

The unique screening method uses yeasts which have been genetically engineered to express parasite and human proteins to identify chemical compounds that target disease-causing parasites but do not affect their human hosts.

Parasitic diseases affect millions of people annually, often in the most deprived parts of the world. Every year, malaria alone infects over 200 million people, killing an estimated 655,000 individuals, mostly under the age of five. Unfortunately, our ability to treat malaria, which is caused by Plasmodium parasites, has been compromised by the emergence of parasites that are resistant to the most commonly used drugs. There is also a pressing need for new treatments targeting other parasitic diseases, which have historically been neglected.

Currently, drug-screening methods for these diseases use live, whole parasites. However, this method has several limitations. First, it may be extremely difficult or impossible to grow the parasite, or at least one of its life cycle stages, outside of an animal host. (For example, the parasite Plasmodium vivax, responsible for the majority of cases of malaria in South America and South-East Asia, cannot be continuously cultivated in laboratory conditions.) Second, the current methods give no insight into how the compound interacts with the parasite or the toxicity of the compound to humans.

In an effort to develop new drugs to fight parasitic diseases, scientists from the University of Cambridge have collaborated with computer scientists at Manchester University to create a cheaper and more efficient anti-parasitic drug-screening method. The clever screening method identifies chemical compounds which target the enzymes from parasites but not those from their human hosts, thus enabling the early elimination of compounds with potential side effects.

Professor Steve Oliver, from the Cambridge Systems Biology Centre and Department of Biochemistry at the University of Cambridge, said: "Our screening method provides a faster and cheaper approach that complements the use of whole parasites for screening. This means that fewer experiments involving the parasites themselves, often in infected animals, need to be carried out."

The new method uses genetically engineered baker's yeast, which either expresses important parasite proteins or their human counterparts. The different yeast cells are labelled with fluorescent proteins to monitor the growth of the individual yeast strains while they grow in competition with one another. High-throughput is provided by growing three to four different yeast strains together in the presence of each candidate compound. This approach also provides high sensitivity (since drug-sensitive yeasts will lose out to drug-resistant strains in the competition for nutrients), reduces costs, and is highly reproducible.

The scientists can then identify the chemical compounds that inhibit the growth of the yeast strains carrying parasite-drug targets, but fail to inhibit the corresponding human protein (thus excluding compounds that would cause side-effects for humans taking the drugs). The compounds can then be explored for further development into anti-parasitic drugs.

In order to demonstrate the effectiveness of their screening tool, the scientists tested it on Trypanosoma brucei, the parasite that causes African sleeping sickness. By using the engineered yeasts to screen for chemicals that would be effective against this parasite, they identified potential compounds and tested them on live parasites cultivated in the lab. Of the 36 compounds tested, 60% were able to kill or severely inhibit the growth of the parasites (under standard lab conditions).

Dr Elizabeth Bilsland, the lead author of the paper from the University of Cambridge, said: "This study is only a beginning. It demonstrates that we can engineer a model organism, yeast, to mimic a disease organism and exploit this technology to perform low-cost, fully-automated drug screens to select and optimise drug candidates as well as identify and validate novel drug targets.

"In the future, we hope to engineer entire pathways from pathogens into yeast and also to construct yeast strains that mimic diseased states of human cells."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Andy Richards receives BIA Lifetime Achievement Award
BBSRC Council member and life sciences entrepreneur Dr Andy Richards has received the BioIndustry Association (BIA) Lifetime Achievement Award.
Wednesday, February 13, 2013
UK Bioscience Sparkles with New Diamond Fellowship
UK bioscience has received a major boost following the announcement of 16 new fellowships by the Biotechnology and Biological Sciences Research Council (BBSRC) including the first ever Diamond Fellowship, so named because the post will be based at the new Research Complex at Harwell, adjacent to the Diamond Light Source in Oxfordshire - the UK national synchrotron facility.
Tuesday, July 21, 2009
Scientific News
It’s Now Easier To Go With The Flow
Rice University tool simplifies comparison of flow cytometry data for laboratories.
FNIH Launches Project to Evaluate Biomarkers in Cancer Patients
Company has announced that it has launched a new project to evaluate the effectiveness of liquid biopsies as biomarkers in colorectal cancer patients.
Drugs that May Combat Deadly Antibiotic-Resistant Bacteria Uncovered
Study identifies 79 compounds that inhibit carbapenem-resistant Enterobacteriaceae (CRE).
Making Precision Medicine a Reality
Researchers are one step closer to understanding the genetic and biological basis of diseases like cancer, diabetes, Alzheimer’s and rheumatoid arthritis – and identifying new drug targets and therapies.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Soy Shows Promise as Natural Anti-Microbial Agent
Soy isoflavones and peptides may inhibit the growth of microbial pathogens that cause food-borne illnesses, according to a new study from University of Guelph researchers.
Doubling Down on Dengue
HMS researchers have discovered two ways a compound blocks dengue virus.
Soy Shows Promise as Natural Anti-Microbial Agent
Researchers from University of Guelph show that soy isoflavones and peptides could be used to reduce microbial contamination of food.
AstraZeneca to Sequence 2 Million Genomes in Search for New Drugs
Company launches integrated genomics approach which aims to transform drug discovery and development.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!