Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemists Find Help from Nature in Fighting Cancer

Published: Thursday, February 28, 2013
Last Updated: Thursday, February 28, 2013
Bookmark and Share
Study of several dozen compounds based on a fungal chemical shows potent anti-tumor activity.

Inspired by a chemical that fungi secrete to defend their territory, MIT chemists have synthesized and tested several dozen compounds that may hold promise as potential cancer drugs.

A few years ago, MIT researchers led by associate professor of chemistry Mohammad Movassaghi became the first to chemically synthesize 11,11’-dideoxyverticillin, a highly complex fungal compound that has shown anti-cancer activity in previous studies. This and related compounds naturally occur in such small amounts that it has been difficult to do a comprehensive study of the relationship between the compound’s structure and its activity — research that could aid drug development, Movassaghi says.

“There’s a lot of data out there, very exciting data, but one thing we were interested in doing is taking a large panel of these compounds, and for the first time, evaluating them in a uniform manner,” Movassaghi says.

In the new study, recently published online in the journal Chemical Science, Movassaghi and colleagues at MIT and the University of Illinois at Urbana-Champaign (UIUC) designed and tested 60 compounds for their ability to kill human cancer cells.

“What was particularly exciting to us was to see, across various cancer cell lines, that some of them are quite potent,” Movassaghi says.

Lead author of the paper is MIT postdoc Nicolas Boyer. Other authors are MIT graduate student Justin Kim, UIUC chemistry professor Paul Hergenrother and UIUC graduate student Karen Morrison.

Improving nature’s design

Many of the compounds tested in this study, known as epipolythiodiketopiperazine (ETP) alkaloids, are naturally produced by fungi. Scientists believe these compounds help fungi prevent other organisms from encroaching on their territory.

In the process of synthesizing ETP natural products in their lab, the MIT researchers produced many similar compounds that they suspected might also have anti-cancer activity. For the new study, they created even more compounds by systematically varying the natural structures — adding or removing certain chemical groups from different locations.

The researchers tested 60 compounds against two different human cancer cell lines — cervical cancer and lymphoma. Then they chose the best 25 to test against three additional lines, from lung, kidney and breast tumors. Overall, dimeric compounds — those with two ETP molecules joined together — appeared to be more effective at killing cancer cells than single molecules (known as monomers).

The structure of an ETP natural product typically has at least one set of fused rings containing one or more sulfur atoms that link to a six-member ring known as a cyclo-dipeptide. The researchers found that another key to tumor-killing ability is the arrangement and number of these sulfur atoms: Compounds with at least two sulfur atoms were the most effective, those with only one sulfur atom were less effective, and those without sulfur did not kill tumor cells efficiently.

Other rings typically have chemical groups of varying sizes attached in certain positions; a key position is that next to the ETP ring. The researchers found that the larger this group, the more powerful the compound was against cancer.

The compounds that kill cancer cells appear to be very selective, destroying them 1,000 times more effectively than they kill healthy blood cells.

The researchers also identified sections of the compounds that can be altered without discernably changing their activity. This is useful because it could allow chemists to use those points to attach the compounds to a delivery agent such as an antibody that would target them to cancer cells, without impairing their cancer-killing ability.

Complex synthesis

Larry Overman, a professor of chemistry at the University of California at Irvine, says the new study is an impressive advance. “Movassaghi and coworkers reveal for the first time a number of relationships between the chemical structure of molecules in the ETP series and their in-vitro anti-cancer activity,” says Overman, who was not part of the research team. “Knowledge of this type will be essential for the future development of ETP-type molecules into attractive clinical candidates and potential novel anti-cancer drugs.”

Now that they have some initial data, the researchers can use their findings to design additional compounds that might be even more effective. “We can go in with far greater precision and test the hypotheses we’re developing in terms of what portions of the molecules are most significant at retaining or enhancing biological activity,” Movassaghi says.

The research was funded by the National Institute of General Medical Sciences.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Real-Time Data for Cancer Therapy
Biochemical sensor implanted at initial biopsy could allow doctors to better monitor and adjust cancer treatments.
Thursday, August 06, 2015
Bacterial Computing
The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.
Monday, July 13, 2015
Researchers Identify New Target For Anti-Malaria Drugs
Manipulating the permeability of a type of vacuole could help defeat malarial parasites.
Thursday, May 14, 2015
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
Microscopic “Walkers” Find Their Way Across Cell Surfaces
Technology could provide a way to deliver probes or drugs to cell structures without outside guidance.
Thursday, October 23, 2014
Stress-Induced Hormone Primes Brain for PTSD
MIT study finds that ghrelin, produced during stressful situations, primes the brain for post-traumatic stress disorder.
Wednesday, October 16, 2013
New Approach to Global Health Challenges
MIT’s Institute for Medical Engineering and Science brings many tools to the quest for new disease treatments and diagnostic devices.
Friday, September 27, 2013
Microfluidic Platform Gives a Clear Look at a Crucial Step in Cancer Metastasis
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Friday, September 27, 2013
Watching Tumors Burst Through a Blood Vessel
A microfluidic platform provides a high-resolution view of a crucial step in cancer metastasis.
Tuesday, September 24, 2013
Device Finds Stray Cancer Cells in Patients’ Blood
A microfluidic device that captures circulating tumor cells could give doctors a noninvasive way to diagnose and track cancers.
Wednesday, April 10, 2013
Researchers Reverse Fragile X Syndrome Symptoms in Adult Mice
Picower Institute neuroscientists use single dose of experimental drug; could prove promising for treatment of autism symptoms.
Tuesday, March 26, 2013
Bringing a New Perspective to Infectious Disease
Enlisted in the fight against HIV, MIT engineers and scientists contribute new technology, materials and computational studies.
Thursday, February 07, 2013
A Safer Way to Vaccinate
Polymer film that gradually releases DNA coding for viral proteins could offer a better alternative to traditional vaccines.
Monday, January 28, 2013
New Technology May Enable Earlier Cancer Diagnosis
Nanoparticles amplify tumor signals, making them much easier to detect in the urine.
Friday, December 21, 2012
Oscillating Microscopic Beads Could be Key to Biolab on a Chip
MIT team finds way to manipulate and measure magnetic particles without contact, potentially enabling multiple medical tests on a tiny device.
Tuesday, September 25, 2012
Scientific News
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!