Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Adult Cells Transformed into Early-Stage Nerve Cells, Bypassing the Pluripotent Stem Cell Stage

Published: Tuesday, May 07, 2013
Last Updated: Tuesday, May 07, 2013
Bookmark and Share
A UW-Madison research group has converted skin cells from people and monkeys into a cell that can form a wide variety of nervous-system cells.

Bypassing the ultraflexible iPSC stage was a key advantage, says senior author Su-Chun Zhang, a professor of neuroscience and neurology. "IPSC cells can generate any cell type, which could be a problem for cell-based therapy to repair damage due to disease or injury in the nervous system."

In particular, the absence of iPSC cells rules out the formation of tumors by pluripotent cells in the recipient, a major concern involving stem cell therapy.

A second advance comes from the virus that delivers genes to reprogram the adult skin cells into a different and more flexible form. Unlike other viruses used for this process, the Sendai virus does not become part of the cell's genes.

Jianfeng Lu, Zhang's postdoctoral research associate at the UW-Madison Waisman Center, removed skin cells from monkeys and people, and exposed them to Sendai virus for 24 hours. Lu then warmed the culture dish to kill the virus without harming the transforming cells. Thirteen days later, Lu was able to harvest a stem cell called an induced neural progenitor. After the progenitor was implanted into newborn mice, neural cells seemed to grow normally, without forming obvious defects or tumors, Zhang says.

Other researchers have bypassed the pluripotent stem cell stage while turning skin cells into neurons and other specialized cells, Zhang acknowledges, but the new research, just published in Cell Reports, had a different goal. "Our idea was to turn skin cells to neural progenitors, cells that can produce cells relating to the neural tissue. These progenitors can be propagated in large numbers."

The research overcomes limitations of previous efforts, Zhang says. First, the Sendai virus, a kind of cold virus, is considered safe because it does not enter the cell's DNA, and it is killed by heat within 24 hours. (This is quite similar to the fever that raises our temperature to remove cold virus.) Second, the neural progenitors have a greater ability to grow daughter cells for research or therapy. Third, the progenitor cells are already well along the path toward specialization, and cannot become, say, liver or muscle cells after implantation. Finally, the progenitors can produce many more specialized cells.

The neurons that grew from the progenitor had the markings of neurons found in the rear of the brain, and that specialization can also be helpful. "For therapeutic use, it is essential to use specific types of neural progenitors," says Zhang. "We need region-specific and function-specific neuronal types for specific neurological diseases."

Progenitor cells grown from the skin of ALS (Lou Gehrig's disease) or spinal muscular atrophy patients can be transformed into various neural cells to model each disease and allow rapid drug screening, Zhang adds.

Eventually, the process could produce cells used to treat conditions like spinal cord injury and ALS.

"These transplantation experiments confirmed that the reprogrammed cells indeed belong to cells of the intended brain regions and the progenitors produced the three major classes of neural cells: neurons, astrocytes and oligodendrocytes," Zhang says. "This proof-of-principle study highlights the possibility to generate many specialized neural progenitors for specific neurological disorders."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

In Directing Stem Cells, Context Matters
The surface cells are grown on has a profound effect on differentiation.
Tuesday, September 09, 2014
New Gene Repair Technique Promises Advances in Regenerative Medicine
Using human iPSC’s and DNA-cutting protein from meningitis bacteria, researchers have created an efficient way to target and repair defective genes.
Thursday, August 15, 2013
Scientific News
Four New Genetic Disorders Identified
Sharing of genetic data empowers discovery of new disorders in children.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos