Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Identify How Cells Control Calcium Influx

Published: Thursday, May 09, 2013
Last Updated: Thursday, May 09, 2013
Bookmark and Share
When brain cells are overwhelmed by an influx of too many calcium molecules, they shut down the channels through which these molecules enter the cells.

Until now, the "stop" signal mechanism that cells use to control the molecular traffic was unknown.

In the new issue of the journal Neuron, UC Davis Health System scientists report that they have identified the mechanism. Their findings are relevant to understanding the molecular causes of the disruption of brain functioning that occurs in stroke and other neurological disorders.

"Too much calcium influx clearly is part of the neuronal dysfunction in Alzheimer's disease and causes the neuronal damage during and after a stroke. It also contributes to chronic pain," said Johannes W. Hell, professor of pharmacology at UC Davis. Hell headed the research team that identified the mechanism that stops the flow of calcium molecules, which are also called ions, into the specialized brain cells known as neurons.

Hell explained that each day millions of molecules of calcium enter and exit each of the 100 billion neurons of the human brain. These calcium ions move in and out of neurons through pore-like structures, known as channels, that are located in the outer surface, or "skin," of each cell.

The flow of calcium ions into brain cells generates the electrical impulses needed to stimulate such actions as the movement of muscles in our legs and the creation of new memories in the brain. The movement of calcium ions also plays a role in gene expression and affects the flexibility of the structures, called synapses, that are located between neurons and transmit electrical or chemical signals of various strengths from one cell to a second cell.

Neurons employ an unexpected and highly complex mechanism to down regulate, or reduce, the activity of channels that are permitting too many calcium ions to enter neurons, Hell and his colleagues discovered. The mechanism, which leads to the elimination of the overly permissive ion channel employs two proteins, α-actinin and the calcium-binding messenger protein calmodulin.

Located on the neuron's outer surface, referred to as the plasma membrane, α-actinin stabilizes the type of ion channels that constitute a major source of calcium ion influx into brain cells, Hell explained. This protein is a component of the cytoskeleton, the scaffolding of cells. The ion channels that are a major source of calcium ions are referred to as Cav1.2 (L type voltage-dependent calcium channels).

The researchers also found that the calcium-binding messenger protein calmodulin, which is the cell's main sensor for calcium ions, induces internalization, or endocytosis, of Cav1.2 to remove this channel from the cell surface, thus providing an important negative feedback mechanism for excessive calcium ion influx into a neuron, Hell explained.

The discovery that α-actinin and calmodulin play a role in controlling calcium ion influx expands upon Hell's previous research on the molecular mechanisms that regulate the activity of various ion channels at the synapse.

One previous study proved relevant to understanding the biological mechanisms that underlie the body's fight-or-flight response during stress.

In work published in the journal Science in 2001, Hell and colleagues reported that the regulation of Cav1.2 by adrenergic signaling during stress is performed by one of the adrenergic receptors (beta 2 adrenergic receptor) directly linked to Cav1.2.

"This protein-protein interaction ensures that the adrenergic regulation is fast, efficient and precisely targets this channel," Hell said.

"We showed that Cav1.2 is regulated by adrenergic signaling on a time scale of a few seconds, and this is mainly increasing its activity when needed, for example during danger, to make our brain work faster and better. The same channel is in the heart, where adrenergic stimulation increases channel/Ca influx activity, increasing the pacing and strength of our heart beat to meet the increased physical demands during danger."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Simple Technology Makes CRISPR Gene Editing Cheaper
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.
Friday, July 24, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Engineers Crack DNA Code of Autoimmune Disorders
Researchers have identified an unexpectedly general set of rules that determine which molecules can cause the immune system to become vulnerable to the autoimmune disorders lupus and psoriasis.
Wednesday, June 10, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Industry-Sponsored Academic Inventions Spur Increased Innovation
Analysis questions assumption that corporate support skews science toward inventions that are less useful than those funded by the government or non-profit organizations.
Monday, March 24, 2014
Chemical Signature for Fast Form of Parkinson's Found
The physical decline experienced by Parkinson's disease patients eventually leads to disability and a lower quality of life.
Monday, November 25, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Discovery Could Lead to Saliva Test for Pancreatic Cancer
The disease is typically diagnosed through an invasive and complicated biopsy.
Tuesday, October 15, 2013
Biologists Find New Method for Discovering Antibiotics
Biologists have developed a revolutionary new method for identifying and characterizing antibiotics.
Tuesday, September 17, 2013
Potential Drug Discovered for Severe Form of Epilepsy
UCSF study found effectiveness of antihistamine on zebrafish bred to mimic disease.
Thursday, September 05, 2013
Potential New Drug for Inflammatory Bowel Disease
Vedolizumab, a new intravenous antibody medication, has shown positive results for treating both Crohn's disease and ulcerative colitis.
Monday, September 02, 2013
Dentistry School Receives $5M to Study Saliva Biomarkers
Imagine having a sample of your saliva taken at the dentist's office, and then learning within minutes whether your risk for stomach cancer is higher than normal.
Thursday, August 15, 2013
Brain Anomolies are Potential Biomarkers for Autism
Brain anomalies may serve as potential biomarkers for the early identification of the neurodevelopmental disorder.
Wednesday, July 10, 2013
Second Amyloid May Play a Role in Alzheimer's
The study is the first to identify deposits of the protein, called amylin, in the brains of people with Alzheimer's disease.
Monday, July 01, 2013
Scientific News
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.
Potential Target for Treatment of Autism
Grant of $2.4 million will support further research.
Sniffing Out Cancer
Scientists have been exploring new ways to “smell” signs of cancer by analyzing what’s in patients’ breath.
Inroads Against Leukaemia
Potential for halting disease in molecule isolated from sea sponges.
Molecular ‘Kiss Of Death’ Flags Pathogens For Destruction
Researchers have discovered that our bodies mark pathogen-containing vacuoles for destruction by using a molecule called ubiquitin, commonly known as the "kiss of death."
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos