Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
Become a Member | Sign in
Home>News>This Article

Duke Researchers Describe How Breast Cancer Cells Acquire Drug Resistance

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
A seven-year quest has revealed a previously unknown molecular network that regulates cell death.

The discovery provides new avenues to overcome drug resistance, according to researchers at Duke Cancer Institute.

“We’ve revealed multiple new signaling pathways that regulate cell death,” said Sally Kornbluth, PhD, vice dean of Basic Science and professor of Pharmacology and Cancer Biology at Duke University School of Medicine. “And we’ve shown, at least in one disease, these signaling pathways can go awry in drug resistance. It also suggests you could manipulate these other pathways to overcome drug resistance.”

The researchers -- co-directed by Kornbluth and Neil Spector, M.D., associate professor of medicine at Duke -- identified a protein that effectively shuts down the signals that tell a cell to die, enabling cancer cells to keep growing. That protein, MDM2, is already generating intense interest in the cancer research community because it is a master regulator of the tumor suppressor protein called p53.
The Duke research team, with assistance from collaborators at the University of Michigan, identified a new role for MDM2 in activating cell death pathways independent of its role in regulating p53, a known initiator of cell death. More than half of all human tumors contain a mutation or deletion of the gene that controls p53.

The researchers began by studying four different types of breast cancer cells that were able to keep growing despite treatment with lapatinib, a powerful drug that targets two growth pathways commonly disrupted in breast cancer, HER2 and epidermal growth factor receptor. They found that in each case, the drug resistance could be traced to the presence of high levels of MDM2, which was found to be blocking cell death signals independent of whether p53 was activated.

“These results suggest that inhibition of MDM2, at least in the setting of breast cancer, might overcome lapatinib resistance even if p53 is mutated,” Kornbluth said.

Spector and his colleagues first reported the activation of estrogen receptor signaling, which led to FDA-approval of lapatinib in combination with letrozole as a first-line treatment for advanced-stage HER2-positive and estrogen receptor-positive breast cancers. Researchers at Duke, including the Spector laboratory, and other investigators have worked to identify various mechanisms of lapatinib resistance.

“The importance of this new MDM2 finding is that it may underlie these proposed mechanisms of resistance and therefore provide a more effective treatment,” Spector said.

The findings also suggest that other drugs targeting tyrosine kinases may be vulnerable to resistance using this same mechanism. Gefitinib is a targeted cancer therapy that blocks a tyrosine kinase enzyme to treat non-small cell lung cancers caused by mutations in the epidermal growth factor receptor.

“This study raises the possibility that resistance to other tyrosine kinase inhibitor drugs, such as gefitinib-resistant lung cancer, could involve MDM2,” Kornbluth said. “We are now going to investigate whether MDM2 has anything to do with gefitinib resistance.”

The lead author of the paper, Manabu Kurokawa, is now an assistant professor at Dartmouth University. Other authors of the paper include Jiyeon Kim, Joseph Geradts, Kenkyo Mastuura, Wenle Xia, Thomas J. Ribar, Ricardo Henao, Neil L. Spector, Mark W. Dewhirst, and Joseph E. Lucas of Duke; Wun-Jae Kim of Chungbuk National University Hospital; and Shaomeng Wang, Liu Liu, and Xu Ran of the University of Michigan.

The study was funded in part by the National Institutes of Health (R01 CA102707) and the National Cancer Institute (K99 CA140948). The Susan G. Komen for the Cure foundation has provided research support into lapatinib resistance. A full list of funders is provided in the published manuscript.

The authors have filed a patent application based on this work. Shaomeng Wang owns stocks and is a consultant for Ascenta, and is a co-inventor on MI-219 and related MDM2 inhibitors. Ascenta has licensed MI-219 and related MDM2 inhibitors from the University of Michigan to Sanofi for clinical development.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Four New Genetic Disorders Identified
Sharing of genetic data empowers discovery of new disorders in children.
Biomarker Predicting Transplant Complications May be Key to Treating Them
A protein that can be used to predict if a stem cell transplant patient will suffer severe complications may also be the key to preventing those complications, an international research team based at the Indiana University School of Medicine reported Wednesday.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Enzyme Malfunction May be Why Binge Drinking Can Lead to Alcoholism
A new study in mice shows that restoring the synthesis of a key brain chemical tied to inhibiting addictive behavior may help prevent alcohol cravings following binge drinking.
Cell's Waste Disposal System Regulates Body Clock Proteins
New way to identify interacting proteins could identify potential drug targets.
Compound Doubles Up On Cancer Detection
Researchers have found that tagging a pair of markers found almost exclusively on a common brain cancer yields a cancer signal that is both more obvious and more specific to cancer.
Promising Drug Candidate to Treat Chronic Itch
In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) describe a class of compounds with the potential to stop chronic itch without the adverse side effects normally associated with medicating the condition.
Are Changes to Current Colorectal Cancer Screening Guidelines Required?
Editorial suggests more research is needed to pinpoint age to end aggressive screening.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
New Molecular Marker for Killer Cells
Cell marker enables prognosis about the course of infections.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos