Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Imaging Biomarker Predicts Response to Rapid Antidepressant

Published: Tuesday, May 28, 2013
Last Updated: Tuesday, May 28, 2013
Bookmark and Share
A telltale boost of activity at the back of the brain while processing emotional information predicted depressed patients’ response to experimental antidepressant.

“We have discovered a potential neuroimaging biomarker that may eventually help to personalize treatment selection by revealing brain-based differences between patients,” explained Maura Furey, Ph.D., of NIH’s National Institute of Mental Health (NIMH).

Furey, NIMH’s Carlos Zarate, M.D., and colleagues, reported on their functional magnetic resonance imaging (fMRI) study of a pre-treatment biomarker for the antidepressant response to scopolamine, Jan. 30, 2013, online in JAMA Psychiatry.

Scopolamine, better known as a treatment for motion sickness, has been under study since Furey and colleagues discovered its fast-acting antidepressant properties in 2006. Unlike ketamine, scopolamine works through the brain’s acetylcholine chemical messenger system. The NIMH team’s research has demonstrated that by blocking receptors for acetylcholine on neurons, scopolamine can lift depression in many patients within a few days; conventional antidepressants typically take weeks to work. But not all patients respond, spurring interest in a predictive biomarker.

The acetylcholine system plays a pivotal role in working memory, holding information in mind temporarily, but appears to act by influencing the processing of information rather than through memory. Imaging studies suggest that visual working memory performance can be enhanced by modulating acetylcholine-induced activity in the brain’s visual processing area, called the visual cortex, when processing information that is important to the task. Since working memory performance can predict response to conventional antidepressants and ketamine, Furey and colleagues turned to a working memory task and imaging visual cortex activity as potential tools to identify a biomarker for scopolamine response.

Depressed patients have a well-known tendency to process and remember negative emotional information. The researchers propose that this bias stems from dysregulated acetylcholine systems in some patients. They reasoned that such patients would show aberrant visual cortex activity in response to negative emotional features of a working memory task. They also expected to find that patients with more dysfunctional acetylcholine systems would respond better to scopolamine treatment.

Before receiving scopolamine, participants performed a working memory task while their brain activity was monitored via fMRI. For some trials, it required that they pay attention to, and remember, the emotional expression (sad, happy, etc.) of faces flashing on a computer monitor. For other trials, they had to pay attention to only the identity, or non-emotional feature, of the faces. After scanning, and over the following several weeks, 15 patients with depression and 21 healthy participants randomly received infusions of a placebo (salt solution) and/or scopolamine. Mood changes were monitored with depression rating scales.

Overall, scopolamine treatment reduced depression symptoms by 63 percent, with 11 of the patients showing a significant clinical response. The strength of this response correlated significantly with visual cortex activity during key phases of the working memory task – while participants were paying attention to the emotional content of the faces. There was no such correlation for trials when they attended to the identity of the faces.

The findings suggest that acetylcholine system activity drives visual cortex activity that predicts treatment response – and that differences seen between depressed patients and controls may be traceable to acetylcholine dysfunction. Overall, patients showed lower visual cortex activity than controls during the emotion phase of the task. Patients showing activity levels most dissimilar to controls experienced the greatest antidepressant response to scopolamine treatment. Visual cortex activity in patients who didn’t respond to scopolamine more closely resembled that of controls. As hypothesized, the pretreatment level of visual cortex activity appears to reflect the extent of patients’ acetylcholine system dysfunction and to predict their response to the experimental medication, say the researchers.

Preliminary evidence suggests that such visual cortex activity in response to emotional stimuli may also apply to other treatments and may prove to be a shared biomarker of rapid antidepressant response, according to Furey.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Advancing Protein Visualization
Cryo-EM methods can determine structures of small proteins bound to potential drug candidates.
Breast Cancer Drug Hope
A drug for breast cancer that is more effective than existing medicines may be a step closer thanks to new research.
Harnessing Nature’s Vast Array of Venoms for Drug Discovery
Scripps scientists have developed a method for rapidly identifying venoms.
A New Platform for Discovering Antibiotics
Harvard chemists hope to shorten time, difficulty in measuring their effectiveness, potential.
The Need for Speed
Evaluating MALDI-TOF as a high-throughput screening technology for the pharmaceutical industry.
Antarctic Sponge Extract Kills MRSA
New findings may provide opportunity for developing new drugs to fight dangerous bacteria currently highly resistant to treatment.
US-India Collab Finds Molecular Signatures of Severe Malaria
Study may be a significant advancement in understanding the causes of severe malaria.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
Gene Expression Controls Revealed
Researchers have modelled every atom in a key part of the process for switching on genes, revealing a whole new area for potential drug targets.
An Old-New Weapon Against Emerging Chikungunya Virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!