Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Therapy May Curb Kidney Deterioration in Patients with Rare Disorder

Published: Tuesday, July 30, 2013
Last Updated: Tuesday, July 30, 2013
Bookmark and Share
Innovation in mouse model helps researchers distinguish disease mechanisms and biomarkers.

A team led by researchers at the National Institutes of Health has overcome a major biological hurdle in an effort to find improved treatments for patients with a rare disease called methylmalonic acidemia (MMA). Using genetically engineered mice created for their studies, the team identified a set of biomarkers of kidney damage -- a hallmark of the disorder -- and demonstrated that antioxidant therapy protected kidney function in the mice. 

Researchers at the National Human Genome Research Institute (NHGRI), part of NIH, validated the same biomarkers in 46 patients with MMA seen at the NIH Clinical Center. The biomarkers offer new tools for monitoring disease progression and the effects of therapies, both of which will be valuable in the researchers' design of clinical trials for this disease.

The discovery, reported in the July 29, 2013, advance online issue of the Proceedings of the National Academy of Sciences, paves the way for use of antioxidant therapy in a clinical trial for patients with MMA. It also illustrates the mechanisms by which dysfunction of mitochondria -- the power generators of the cell -- affects kidney disease. Mitochondrial dysfunction is a factor not only in rare disorders, such as MMA, but also in a wide variety of common conditions, such as obesity, diabetes and cancer.

MMA affects as many as one in 67,000 children born in the United States. It can have several different causes, all involving loss of function of a metabolic pathway that moderates levels of an organic compound called methylmalonic acid. Affected children are unable to properly metabolize certain amino acids consumed in their diet, which damages a number of organs, most notably the kidneys. 

"Metabolic disorders like MMA are extremely difficult to manage because they perturb the delicate balance of chemicals that our bodies need to sustain health," said Daniel Kastner, M.D., Ph.D., NHGRI scientific director. "Given that every newborn in the United States is screened for a number of inherited metabolic disorders, including MMA, there is a critical need for better understanding of the disease mechanisms and therapies to treat them."

MMA is the most common organic acid disorder and invariably impairs kidney function, which can lead to kidney failure. The most common therapy is a restrictive diet, but doctors must resort to dialysis or kidney transplantation when the disease progresses. MMA patients also suffer from severe metabolic instability, failure to thrive, intellectual and physical disabilities, pancreatitis, anemia, seizures, vision loss and strokes.

"There are no definitive treatments for the management of patients with MMA," said Charles Venditti, M.D., Ph.D., senior author and investigator in the Organic Acid Research Section of NHGRI's Genetics and Molecular Biology Branch. "This study is the culmination of collaboration with the patient community. It uses mouse modelling, coupled with innovations in genomics and biochemical analyses, to derive new insights into the causes of renal injury in MMA. Our studies have improved our understanding of the basic biology underlying MMA, created a novel animal model for testing interventions and, now, led us to the promise of a new therapy."  

The researchers performed the studies using mice bred to carry gene alterations that disrupt the production of the same mitochondrial enzyme that is defective in patients with MMA. These are called transgenic mice. The enzyme, called methylmalonyl-CoA mutase (MUT), is an important component of the chemical process that metabolizes organic acids, specifically methylmalonic acid. 

By measuring gene expression in the transgenic mice using DNA microarrays, researchers discovered 50 biomarkers of gene expression that each indicated declining kidney function. DNA microarrays are silicon chips with many spots to which a given molecule may bind. In this case, the DNA microarrays were used to precisely generate, with the aid of a computer program, a profile of gene expression in a kidney cell.

The researchers chose one of the biomarkers, called lipocalin-2, to test how it correlated with kidney function in 46 MMA patients. Plasma levels of this biomarker rose with kidney deterioration in patients with MMA, and may serve as a valuable indicator of MMA kidney disease progression in the clinic.

"The detection of biomarkers through microarray technology is immensely helpful in pointing to downstream pathways affected by the defective MUT activity," said Irini Manoli, M.D., Ph.D., lead author and a physician scientist and staff clinician in NHGRI's Genetics and Molecular Biology Branch. "The biomarkers provide new plasma or serum tests to follow disease progression in our patients." 

Having discovered these important biomarkers of kidney function, the authors turned to kidney physiology experts on their team to explore the structural changes that occur in MMA disease. They analyzed the rate at which the kidneys filter waste from the blood. Co-author and renal physiology expert Jurgen Schnermann, M.D., and members of his laboratory at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), also part of NIH, demonstrated the early and significant decrease in this rate in MMA mice. 

With further studies, the researchers identified increased production of free radicals in tissues from the mice, as well as in the MMA patients. Detection of free radicals indicates chemical instability in cells, which the researchers sought to remedy with antioxidant therapy. After treating the mice with two forms of dietary antioxidants, the researchers observed that the biomarkers of kidney damage diminished and the faltering kidney filtration rate tapered off. The findings demonstrated that readily available antioxidants can significantly affect the rate of decline of kidney function in transgenic mice, which replicate the kidney disease of MMA.

"The next step will be to translate these findings to the clinic," Dr. Venditti said. "With a progressive disorder like MMA, we are hopeful that we have achieved a laboratory success that our patients will benefit from in the near future."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Wednesday, February 10, 2016
Genomic Signature Shared by Five Types of Cancer
National Institutes of Health researchers have identified a striking signature in tumor DNA that occurs in five different types of cancer.
Monday, February 08, 2016
Experimental Combination Surprises with Anti-HIV Effectiveness
A compound developed to protect the nervous system from HIV surprised researchers by augmenting the effectiveness of an investigational antiretroviral drug beyond anything expected.
Monday, January 25, 2016
NIH Unveils FY2016–2020 Strategic Plan
Detailed plan sets course for advancing scientific discoveries and human health.
Thursday, December 17, 2015
Biomarkers Outperform Symptoms in Parsing Psychosis Subgroups
Multiple biological pathways lead to similar symptoms - NIH-funded study.
Thursday, December 10, 2015
NIH Supports New Studies to Find Alzheimer’s Biomarkers in Down Syndrome
Initiative will track dementia onset, progress in Down syndrome volunteers.
Tuesday, December 01, 2015
Nuclear Transport Problems Linked to ALS and FTD
NIH-supported studies point to potential new target for treating neurodegenerative diseases.
Monday, October 19, 2015
NIH Framework Points The Way Forward For Developing The President’s Precision Medicine Initiative
The NIH Advisory Committee to the Director has presented to NIH Director Francis S. Collins, M.D., Ph.D., a detailed design framework for building a national research participant group, called a cohort, of 1 million or more Americans to expand our knowledge and practice of precision medicine.
Monday, September 21, 2015
Beth Israel Cardiology Team Awarded $3 Million by NIH
Work will help predict outcomes in patients with heart disease.
Friday, September 18, 2015
NIH Awards Nearly $35 Million to Research Natural Products
Innovative Research Centers Program investigates botanical dietary supplements and other natural products.
Thursday, September 10, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Scientific News
Charting Kidney Cancer Metabolism
Changes in cell metabolism are increasingly recognized as an important way tumors develop and progress, yet these changes are hard to measure and interpret. A new tool designed by MSK scientists allows users to identify metabolic changes in kidney cancer tumors that may one day be targets for therapy.
Insights into the Function of the Main Class of Drug Targets
About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors.
Visualizing a Cancer Drug Target at Atomic Resolution
Using cryo-electron microscopy, researchers were able to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells.
Honey’s Potential to Save Lives
The healing powers of honey have been known for thousands of years.
3-D Printed Lifelike Liver Tissue for Drug Screening
A team led by engineers at the University of California, San Diego has 3D-printed a tissue that closely mimics the human liver's sophisticated structure and function. The new model could be used for patient-specific drug screening and disease modeling.
Cytoskeleton Crew
Findings confirm sugar's role in helping cancers survive by changing cellular architecture.
Biomarker for Recurring HPV-Linked Oropharyngeal Cancers
A look-back analysis of HPV infection antibodies in patients treated for oropharyngeal (mouth and throat) cancers linked to HPV infection suggests at least one of the antibodies could be useful in identifying those at risk for a recurrence of the cancer, say scientists at the Johns Hopkins University.
Valvena, GSK Sign New R&D Collaboration
Valneva to supply process development services for EB66® -based Influenza vaccines.
Light Signals from Living Cells
Fluorescent protein markers delivered under high pressure.
Cellular 'Relief Valve'
A team led by scientists at The Scripps Research Institute (TSRI) has solved a long-standing mystery in cell biology by showing essentially how a key “relief-valve” in cells does its job.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!