Corporate Banner
Satellite Banner
Biomolecular Screening
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NIH Funds Research to Explore a Cell Communication Process

Published: Wednesday, August 14, 2013
Last Updated: Wednesday, August 14, 2013
Bookmark and Share
Researchers will investigate the emerging field of extracellular RNA and its role in human health conditions.

The National Institutes of Health announced today it will award $17 million this year for 24 research projects designed to improve scientists’ understanding of a newly discovered type of cell-to-cell communication based on extracellular (outside the cell) RNA, also called exRNA. Through these awards, scientists will explore basic exRNA biology and develop tools and technologies that apply new knowledge about exRNA to the research, diagnosis and treatment of diseases. To unlock the potential of this new scientific field, the awarded research projects will address conditions in which exRNA could play a role, including many types of cancer, bone marrow disorders, heart disease, Alzheimer’s disease and multiple sclerosis.

The collaborative, cross-cutting Extracellular RNA Communication program is supported by the NIH Common Fund and led by a trans-NIH team that includes the National Center for Advancing Translational Sciences (NCATS); National Cancer Institute (NCI); National Heart, Lung, and Blood Institute (NHLBI); National Institute on Drug Abuse (NIDA); and National Institute of Neurological Disorders and Stroke (NINDS).

“We have a tremendous opportunity to explore a recently discovered novel way that cells communicate,” said NIH Director Francis S. Collins, M.D., Ph.D. “Expanding our understanding of this emerging scientific field could help us determine the role extracellular RNA plays in health and disease, and unlocking its mysteries may provide our nation’s scientists with new tools to better diagnose and treat a wide range of diseases.”

Scientists think exRNA can regulate many functions in the body and may have an important role in a variety of diseases, but they still know very little about basic exRNA biology. Most RNA works inside cells to translate genes into proteins that are necessary for organisms to function. Other types of RNA control which proteins and the amount of those proteins the cells make. Until recently, scientists believed RNA worked mostly inside the cell that produced it. Now, recent findings show cells can release RNA in the form of exRNA to travel through body fluids and affect other cells. ExRNA can act as a signaling molecule, communicating with other cells and carrying information from cell to cell throughout the body.

Researchers hope to use some kinds of exRNA as biomarkers, or indicators of the presence, absence or stage of a disease. These biomarkers may enable scientists to understand and diagnose diseases earlier and more effectively. Scientists also will use exRNA to develop molecular treatments for diseases.

“To harness exRNA’s enormous potential for diagnostics and therapeutics in a broad range of diseases, we first need to understand more about different types of exRNA, how cells make and release it, how it travels through the body, how it targets and affects specific cells, and how the amount and type of exRNA can change in disease,” said James Anderson, M.D., Ph.D., director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the NIH Common Fund. “Awards in this exciting new field will help advance our collective understanding of exRNA communication and will enable research in many biomedical research fields.”

Multidisciplinary teams of investigators will carry out research projects in a number of critical scientific areas. NCATS will administer 18 awards through which researchers will develop biomarkers from exRNA and design new ways to use exRNA in treatments. NCI will oversee five projects that address how cells make and release exRNA (biogenesis), how and where exRNA travels through body fluids to other cells (biodistribution), how cells take in exRNA that is traveling through body fluids (uptake), and how exRNA changes the function of cells (effector functions). NIDA will support a project to develop a Data Management and Resource Repository that will house all of the data generated by these projects, including a public ExRNA Atlas website to serve as a community-wide resource for exRNA research standards, protocols, data, tools and technology. Scientists working on these projects will form an ExRNA Consortium to collaborate, share information, and spread knowledge to the larger scientific community and public.

“NCATS develops, demonstrates and disseminates new technologies that catalyze improvements in human health” said NCATS Director Christopher P. Austin, M.D. “These awards epitomize that mission, delving into a brand new area of science to discover new targets for interventions, diagnostics, biomarkers and therapeutics — all of which will speed the path from discovery to improved health.”

The 24 awards are milestone-driven cooperative agreements. Individual projects will be supported for up to five years, except for the Data Management and Resource Repository, which could be supported longer. To learn more about the research projects, visit http://commonfund.nih.gov/exrna/fundedresearch.

Later this year, NIH plans to issue a request for applications to develop an exRNA reference profile, which is a catalog of the types of exRNA found in various body fluids from healthy humans. NHLBI will lead this effort to enable studies on how exRNA profiles of people with diseases differ from those of healthy people.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Protein Related to Long Term Traumatic Brain Injury Complications Discovered
NIH-study shows protein found at higher levels in military members who have suffered multiple TBIs.
Tuesday, August 04, 2015
Crystal Clear Images Uncover Secrets of Hormone Receptors
NIH researchers gain better understanding of how neuropeptide hormones trigger chemical reactions in cells.
Monday, August 03, 2015
Vital Protein in Healthy Fertilization Process Identified
Researchers at the National Institutes of Health have discovered a protein that plays a vital role in healthy egg-sperm union in mice.
Monday, July 27, 2015
NIH Joins Public-Private Partnership to Fund Research on Autism Biomarkers
Biomarkers Consortium project to improve tools for measuring and treating social impairment in children with autism.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
HIV can Spread Early, Evolve in Patients' Brains
Findings add urgency to screening, treatment - NIH-funded study.
Saturday, March 28, 2015
Test Reliably Detects Inherited Immune Deficiency in Newborns
NIH-supported study suggests that early diagnosis of severe combined immunodeficiency leads to high survival rates.
Thursday, August 21, 2014
NIH Names New Clinical Sites in Undiagnosed Diseases Network
Four-year, $43 million initiative engages broad expertise in study of mystery conditions.
Wednesday, July 02, 2014
Underlying Genetics and Marker For Stroke Discovered
NIH-funded findings point to new potential strategies for disease prevention, treatment.
Friday, March 21, 2014
Epigenetic Clock Marks Age of Human Tissues and Cells
The age of many human tissues and cells is reflected in chemical changes to DNA. The finding provides insights for cancer, aging, and stem cell research.
Tuesday, November 05, 2013
Brain May Flush Out Toxins During Sleep
NIH-funded study suggests sleep clears brain of damaging molecules associated with neurodegeneration.
Friday, October 18, 2013
NIH Researchers Identify Candidate Drug to Treat Batten Disease
The drug, tested in mice, was found to slow the loss of coordination seen in the disorder extending the animals’ life span.
Tuesday, October 01, 2013
Scientific News
Promising Class of New Cancer Drugs Cause Memory Loss in Mice
New findings from The Rockefeller University suggest that the original version of BET inhibitors causes molecular changes in mouse neurons, and can lead to memory loss in mice that receive it.
Electrical Control of Cancer Cells
Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control these switches.
Signature of Microbiomes Linked to Schizophrenia
Studying microbiomes in throat may help identify causes and treatments of brain disorder.
Inflammation Linked to Colon Cancer Metastasis
A new Arizona State University research study led by Biodesign Institute executive director Raymond DuBois has identified for the first time the details of how inflammation triggers colon cancer cells to spread to other organs, or metastasize.
Structural Discoveries Could Aid in Better Drug Design
Scientists have uncovered the structural details of how some proteins interact to turn two different signals into a single integrated output.
Determining the Age of Fingerprints
Watch the imprint of a tire track in soft mud, and it will slowly blur, the ridges of the pattern gradually flowing into the valleys. Researchers have tested the theory that a similar effect could be used to give forensic scientists a way to date fingerprints.
Genetic Overlapping in Multiple Autoimmune Diseases May Suggest Common Therapies
CHOP genomics expert leads analysis of genetic architecture, with eye on repurposing existing drugs.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Tissue Bank Pays Dividends for Brain Cancer Research
Checking what’s in the bank – the Brisbane Breast Bank, that is – has paid dividends for UQ cancer researchers.
Researchers Publish Landmark “Basket Study”
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have announced results from the first published basket study, a new form of clinical trial design that explores responses to drugs based on the specific mutations in patients’ tumors rather than where their cancer originated.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!